Math, asked by khaleel7207, 4 months ago

If cosx + cosy = 4
5
and cosx - cosy = 2
7
, find the value of
x - y x + y 14tan + 5cot
2 2
           .

Answers

Answered by rk1684606
3

Answer:

14\tan\frac{x-y}{2}+5\cot\frac{x+y}{2}=014tan

2

x−y

+5cot

2

x+y

=0

Step-by-step explanation:

Given : If \cos x+\cos y=\frac{4}{5}cosx+cosy=

5

4

and \cos x-\cos y=\frac{2}{7}cosx−cosy=

7

2

To find : The value of 14\tan(\frac{x-y}{2})+5\cot\frac{x+y}{2}14tan(

2

x−y

)+5cot

2

x+y

?

Solution :

If \cos x+\cos y=\frac{4}{5}cosx+cosy=

5

4

and \cos x-\cos y=\frac{2}{7}cosx−cosy=

7

2

Applying trigonometric identities,

\cos x+\cos y=2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})cosx+cosy=2cos(

2

x+y

)cos(

2

x−y

)

\frac{4}{5}=2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})

5

4

=2cos(

2

x+y

)cos(

2

x−y

) .....(1)

\cos x-\cos y=-2\sin(\frac{x-y}{2})\sin(\frac{x+y}{2})cosx−cosy=−2sin(

2

x−y

)sin(

2

x+y

)

\frac{2}{7}=-2\sin(\frac{x-y}{2})\sin(\frac{x+y}{2})

7

2

=−2sin(

2

x−y

)sin(

2

x+y

) .....(2)

Divide (1) and (2),

\frac{2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})}{-2\sin(\frac{x-y}{2})\sin(\frac{x+y}{2})}=\frac{\frac{4}{5}}{\frac{2}{7}}

−2sin(

2

x−y

)sin(

2

x+y

)

2cos(

2

x+y

)cos(

2

x−y

)

=

7

2

5

4

-\frac{\cot\frac{x+y}{2}}{\tan\frac{x-y}{2}}=\frac{14}{5}−

tan

2

x−y

cot

2

x+y

=

5

14

-5\cot\frac{x+y}{2}=14\tan\frac{x-y}{2}−5cot

2

x+y

=14tan

2

x−y

14\tan\frac{x-y}{2}+5\cot\frac{x+y}{2}=014tan

2

x−y

+5cot

2

x+y

=0

Therefore, The value of the expression is 14\tan\frac{x-y}{2}+5\cot\frac{x+y}{2}=014tan

2

x−y

+5cot

2

x+y

=0

Similar questions