Math, asked by clopadmku8lkarri9eng, 1 year ago

If cosx + sinx = √2 cosx, prove that : cosx - sinx = +-√2 sinx

Answers

Answered by Anonymous
312
Given,
cos x + sinx = √ 2 cos x , then (√2 -1 ) cos  x = sin x
on multiplying both sides by (√2+1) , we get
(√2+1)(√2-1) cos x  =  (√2+ 1) sin x
⇒ cos x = √2 sin x + sin x
⇒ cos x -sin x = √ 2 sin x
Answered by hotelcalifornia
77

Answer:

Hence proved that \cos x - \sin x = \pm \sqrt { 2 } \sin x

To prove:

\cos x - \sin x = \pm \sqrt { 2 } \sin x

Solution:

By the given identity, we know that

\cos x + \sin x = \sqrt { 2 } \cos x\\

\begin{array} { c } { \sin x = \sqrt { 2 } \cos x - \cos x } \\\\ { \sin x = ( \sqrt { 2 } - 1 ) \cos x } \\\\ { ( \sqrt { 2 } + 1 ) ( \sqrt { 2 } - 1 ) \cos x = ( \sqrt { 2 } + 1 ) \sin x } \end{array}

We know that,

( a + b ) ( a - b ) = a ^ { 2 } - b ^ { 2 }\\

\begin{array} { c } { \left( ( \sqrt { 2 } ) ^ { 2 } - ( 1 ) ^ { 2 } \right) \cos x = ( \sqrt { 2 } + 1 ) \sin x } \\\\ { ( 2 - 1 ) \cos x = ( \sqrt { 2 } + 1 ) \sin x } \\\\ { \cos x = \sqrt { 2 } \sin x + \sin x } \\\\ { \cos x - \sin x = \sqrt { 2 } \sin x } \end{array}

Hence Proved that \cos x - \sin x = \pm \sqrt { 2 } \sin x

Similar questions