Math, asked by aadisharma1303, 1 year ago

if cosx + sinx = √2 cosx then show cosx -sinx =√2 sinx

Answers

Answered by maan1269201pacn03
58
cos x+sinx= ✓2cosx
sinx=(✓2-1)cosx
multiply ✓2+1 both side
(✓2+1)sinx=(✓2+1)(✓2-1)cosx
✓2sinx+sinx=cos x
cosx-sinx=✓2sinx
Answered by mysticd
25

Answer:

if\: cosx + sinx = \sqrt{2} cosx\\ then \: cosx -sinx =\sqrt{2} sinx

Step-by-step explanation:

we \:have ,\\cosx+sinx=\sqrt{2}cosx---(1)

On Squaring both sides of the equation,we get

\implies (cosx+sinx)^{2}=\big(\sqrt{2}cosx\big)^{2}

\implies cos^{2}x+sin^{2}x+2cosxsinx=2cos^{2}x

\implies sin^{2}x=2cos^{2}x-cos^{2}x-2cosxsinx

\implies sin^{2}x=cos^{2}x-2cosxsinx

Adding sin²x both sides of the equation,we get

\implies 2sin^{2}x=cos^{2}x+sin^{2}x-2cosxsinx

\implies \big(\sqrt{2}sinx\big)^{2}x=(cosx-sinx)^{2}

\implies \sqrt{2}sinx=cosx-sinx

Therefore,

cosx-sinx=\sqrt{2}sinx

•••♪

Similar questions