If cosx + sinx =√2cosx , prove that cosx-sinx =√2sinx
Answers
Answered by
0
Answer:
Given,
cos x + sinx = √ 2 cos x , then (√2 -1 ) cos x = sin x
on multiplying both sides by (√2+1) , we get
(√2+1)(√2-1) cos x = (√2+ 1) sin x
⇒ cos x = √2 sin x + sin x
⇒ cos x -sin x = √ 2 sin x
hence proved
Answered by
0
Step-by-step explanation:
cosx + sinx = √2cosx
Squaring both sides
cos²x+sin²x+2sinxcosx=2cos²x
cos²x-sin²x=2sinxcosx → (1)
Now, (cosx - sinx)²=cos²x+sin²x-2sinxcosx
=cos²x + sin²x - cos²x + sin²x [From (1)]
=2sin²x
So, cosx-sinx=√(2sin²x)
=±√2sinx
Similar questions