If cot 0 + cos 0 = m and cot 0 - cos 0 = n, then prove that (m2 - 12)2 = 16 mn.
Answers
Answered by
3
cotθ + cosθ = m
cotθ - cosθ = n
now,
(m² - n²)² = [(m - n)(m + n)]²
[ (cotθ + cosθ- cotθ + cosθ)(cotθ - cosθ+ cotθ + cosθ) ]²
[ (2cosθ)(2cotθ) ] ²
[ 16(cot²θ) . (cos²θ) ]-----------( 1 )
now,
16mn
16(cot θ + cos θ)(cot θ - cos θ)
16(cot²θ - cos²θ)
16(cos²θ / sin²θa - cos²θ)
16(cos²θ - cos²θ . sin²θ)/sin²θ
16(cos²θ(1 - sin²θ)/sin²θ
16(cos²θ . cos²θ)/sin²θ
16(cos²θ/sin²θ . cos²θ)
16(cot²θ . cos²θ)------------( 2 )
from-----( 1 ) & -----( 2 )
[(m² - n²)]² = 16(m n)
HOPE IT HELPS U
MARK AS BRAINLIEST
Similar questions
English,
1 month ago
Social Sciences,
1 month ago
History,
1 month ago
Science,
3 months ago
Science,
3 months ago
Chemistry,
10 months ago
Social Sciences,
10 months ago
Math,
10 months ago