If cot 0 + cos 0 = p and coto - cos 0 = q, then the
value of p2 - q2 is
please reply fastt ......
with proper step by step method
please....
please
Answers
Given :
- cot θ + cos θ = p ____equation (1)
- cot θ - cos θ = q ____equation (2)
To find :
- p² - q²
option are:
(1) 2 √(pq)
(2) 4 √(pq)
(3) 2 pq
(4) 4 pq
Solution :
→ p² - q²
putting given values of p and q
→ p² - q²= (cot θ + cos θ)² - (cot θ - cos θ)²
using algebraic identity , ( a + b )² = a² + b² + 2 a b and ( a - b )² = a² + b² - 2 a b
→ p² - q² = (cot²θ + cos²θ + 2 cot θ cos) - (cot²θ + cos²θ - 2 cot θ cos θ)
→ p² - q² = cot²θ + cos²θ + 2 cot θ cos - cot²θ - cos²θ + 2 cot θ cos θ
→ p² - q² = 4 cot cos θ
→ ( p² - q²) / 4 = cot cos θ____equation (3)
Now,
Multiplying equation (1) and (2)
→ (cot θ + cos θ) (cot θ - cos θ) = p q
using algebraic identity, a² - b² = ( a + b ) ( a - b )
→ cot²θ - cos²θ = p q
putting cot²θ = cos²θ / sin²θ
→ (cos²θ/sin²θ) - cos²θ = p q
Taking LCM in LHS
→ ( cos²θ - sin²θ cos²θ ) / sin²θ = p q
Taking cos²θ common in numerator of LHS
→ [cos²θ ( 1 - sin²θ ) ] / sin²θ = p q
using trigonometric identity, 1 - sin²θ = cos²θ
→ ( cos²θ cos²θ ) / sin²θ = p q
→ cot²θ cos²θ = p q
→ ( cot θ cos θ )² = p q
→ cot θ cos θ = √(p q)
using equation (3)
→ ( p² - q² ) / 4 = √ (p q)
→ p² - q² = 4 √(p q)
therefore,
- p² - q² = 4 √( p q )
Option (2) is correct .