Math, asked by priyanshu3045, 1 year ago

If cot⁻¹1/x+cot⁻¹1/y+cot⁻¹1/z = π/2, then prove that xy+yz+zx=1

Answers

Answered by Swarup1998
8

Proof :

\mathrm{Given,\:cot^{-1}\frac{1}{x}+cot^{-1}\frac{1}{y}+cot^{-1}\frac{1}{z}=\frac{\pi}{2}}

\implies \mathrm{cot^{-1}\frac{\frac{1}{x}\frac{1}{y}-1}{\frac{1}{x}+\frac{1}{y}}+cot^{-1}\frac{1}{z}=\frac{\pi}{2}}

\implies \mathrm{cot^{-1}\frac{1-xy}{x+y}+cot^{-1}\frac{1}{z}=\frac{\pi}{2}}

\implies \mathrm{cot^{-1}\frac{\frac{1-xy}{x+y}\frac{1}{z}-1}{x+y+\frac{1}{z}}=\frac{\pi}{2}}

\implies \mathrm{\frac{\frac{1-xy-zx-yz}{(x+y)z}}{x+y+\frac{1}{z}}=cot\frac{\pi}{2}=0}

\implies \mathrm{1-xy-zx-yz=0}

\therefore \boxed{\mathrm{xy+yz+zx=1}}

Hence, proved.

Answered by ITZWildBoy
3

Step-by-step explanation:

\huge\underline\mathfrak\purple{Solution}

Attachments:
Similar questions