Math, asked by SaanyaYadav, 1 year ago

If cot 2 theta = tan 4 theta, where 2 theta and 4 theta are acute angles, find the value of sin 3 theta

Answers

Answered by ManjeetGupta
55
cot2©=tan4©
=tan(90-2©]=tan4©
◆ 90-2©=4©
◆6©=90
◆©=15°
now,sin3©=sin45°
I.e sin3©=1√2
Answered by Explode
52

 \cot2 \alpha =  \tan4 \alpha  \\  \ \tan(90 -  2\alpha ) =  \ \tan4 \alpha  \\ 90 - 2 \alpha  = 4 \alpha \\ 6 \alpha  = 90 \\  \alpha  = 15 \\  \\  \\  \sin3 \alpha  =  \sin(3 \times 15) =  \ \sin45 =  \frac{1}{ \sqrt{2} }
Hope it will help you .
Similar questions