If cot 20° =P
Then tan 160°-tan110°/1+tan160+tan110
Answers
Answer:-
Given:-
cot 20° = P -- equation (1)
We know that,
cot θ = 1/tan θ
So,
⟹ 1/tan 20° = p
⟹ tan 20° = 1/p -- equation (2)
We have to find:-
(tan 160° - tan 110°) / (1 + tan 160° + tan 110°)
- tan 160° = tan (180° - 20°) = - tan 20° [ ∵ tan (180° - θ) ]
- tan 110° = tan (90° + 20°) = - cot 20° [ ∵ tan (90° + θ) = - cot θ ]
Putting the respective values we get,
⟹ [ - tan 20° - (- cot 20°) ] / 1 + ( - tan 20°) + ( - cot 20°)
⟹ [ - tan 20° + cot 20° ] / 1 - tan 20° - cot 20°
Substitute the values of tan 20° and cot 20° from equations (1) & (2).
⟹ ( - 1/p + p) / (1 - 1/p - p)
⟹ { ( - 1 + p ²) / p } * { p / (p - 1 - p²) }
⟹ (p² - 1) / (p - p² - 1)
Answer :
( p² - 1 ) / ( p - p² - 1 )
Explanation :
Before solving the problem, we must know some basic trigonometric formulas and identities which are very helpful for solving these types of problems.
Basic formulas to be used in solution,
- tan θ = 1/cot θ
- cot θ = 1/tan θ
- tan ( 90° + θ ) = - cot θ
- tan ( 180° - θ ) = - tan θ
- tan ( 90° - θ ) = cot θ
Now let's try to solve this problem, by converting the given terms in the form of these identities.
Firstly we are given,
⇒ cot 20° = p
⇒ tan θ = 1 / cot θ
⇒ tan 20° = 1 / cot 20°
⇒ tan 20° = 1 / p
We have to simplify,
⇒ ( tan 160° - tan 110° ) / ( 1 + tan 160° + tan 110° )
⇒ [ tan(180°-20°) - tan(90°+20°)] / [ 1 + tan(180°-20°) + tan(90°+20°)]
Now use the identities we discussed above,
⇒ [ - tan 20° - ( - cot 20° ) ] / [ 1 + (-tan 20°) + ( - cot 20°) ]
⇒ [ - tan 20° + cot 20° ] / [ 1 - tan 20° - cot 20° ]
Now substitute the given values
⇒ [ -1/p + p ] / [ 1 - 1/p - p ]
⇒ [ (-1 + p²)/p ] / [ ( p - 1 - p²)/p ]
⇒ (- 1 + p² ) / ( p - 1 - p²)
⇒ ( p² - 1 ) / ( p - p² - 1 )
Hence this is the required answer.
[ If you find any complexity in any step, kindly see the attachment ].