Math, asked by ashleshakasat124, 11 months ago

If cot Φ = 3/4,prove that √secΦ-cosecΦ/secΦ+cosecΦ =1/√7.

Answers

Answered by Anonymous
10

QUESTION :

If \sf{cot\theta=\frac{3}{4}}

Prove that,

\sf{\sqrt{\frac{sec\theta-cosec\theta}{sec\theta+cosec\theta}}=\frac{1}{\sqrt{7}}}

SOLUTION :

Given:-

\sf{cot\theta=\frac{3}{4}}

We know,

\sf{cot\theta=\frac{Base}{Height}=\frac{3}{4}}

According to "Pythagoras Theorem " :

Height ² + Base² = Hypotenuse ²

→4² + 3² = Hypotenuse ²

→16+9 = Hypotenuse ²

→ 25 = Hypotenuse ²

→ 5 = Hypotenuse

So,

\sf{sec\theta=\frac{Hypotenuse}{Base}=\frac{5}{3}}

\sf{cosec\theta=\frac{Hypotenuse}{Height}=\frac{5}{4}}

Taking L.H.S,

\sf{\sqrt{\frac{sec\theta-cosec\theta}{sec\theta+cosec\theta}}}

\implies\sf{\sqrt{\frac{\frac{5}{3}-{\frac{5}{4}}}{\frac{5}{3}+{\frac{5}{4}}}}}

\implies\sf{\sqrt{\frac{\frac{5}{12}}{\frac{35}{12}}}}

\implies\sf{\sqrt{\frac{5}{12}\times{\frac{12}{35}}}}

\implies\sf{\sqrt{\frac{1}{7}}}

\implies\sf{\frac{1}{\sqrt{7}}}

L.H.S = R.H.S ( Proved)

Answered by Anonymous
4

Given:-

\sf{cot\theta=\frac{3}{4}}

We know,

\sf{cot\theta=\frac{Base}{Height}=\frac{3}{4}}

According to "Pythagoras Theorem " :

Height ² + Base² = Hypotenuse ²

→4² + 3² = Hypotenuse ²

→16+9 = Hypotenuse ²

→ 25 = Hypotenuse ²

→ 5 = Hypotenuse

So,

\sf{sec\theta=\frac{Hypotenuse}{Base}=\frac{5}{3}}

\sf{cosec\theta=\frac{Hypotenuse}{Height}=[tex]\frac{5}{4}}

Taking L.H.S,

\sf{\sqrt{\frac{sec\theta-cosec\theta}{sec\theta+cosec\theta}}}

\implies\sf{\sqrt{\frac{\frac{5}{3}-{\frac{5}{4}}}{\frac{5}{3}+{\frac{5}{4}}}}}

\implies\sf{\sqrt{\frac{\frac{5}{12}}{\frac{35}{12}}}}

\implies\sf{\sqrt{\frac{5}{12}\times{\frac{12}{35}}}}

\implies\sf{\sqrt{\frac{1}{7}}}

\implies\sf{\frac{1}{\sqrt{7}}}

L.H.S = R.H.S ( Proved)

Similar questions