If cotθ =40/9 , find the values of cosecθ and sinθ.
Answers
Answered by
2
cot A = 40 / 9
=> B /P = 40 / 9
let base = 40a
Perpendicular = 9a
Hypotenuse = sqrt [ (40a)^2 + (9a)^2]
= sqrt ( 1600a^2 + 81a^2)
= sqrt (1681a^2)
= 41a
Now,
Cosec A = H / P
= 41a/ 9a
= 41/ 9
______________
sin A = 1/ cosec A
= 9 / 41
=> B /P = 40 / 9
let base = 40a
Perpendicular = 9a
Hypotenuse = sqrt [ (40a)^2 + (9a)^2]
= sqrt ( 1600a^2 + 81a^2)
= sqrt (1681a^2)
= 41a
Now,
Cosec A = H / P
= 41a/ 9a
= 41/ 9
______________
sin A = 1/ cosec A
= 9 / 41
Answered by
5
Solution :
Here I am using A instead of theta.
Given cot A = 40/9
i ) Cosec² A = 1 + cot² A
= 1 + ( 40/9 )²
= 1 + 1600/81
= 1681/81
Cosec A = √ 1681/81
cosecA = 41/9
ii ) sin A = 1/cosecA
=> SinA = 1/(41/9)
SinA = 9/41
••••
Similar questions
Social Sciences,
7 months ago
Hindi,
7 months ago
Physics,
7 months ago
Geography,
1 year ago
History,
1 year ago