Math, asked by gagansuraj, 1 year ago

If cot =7/8
evaluate : (i)
(1 + sin 0) (1 - sin o)/
(1 + cos 0) (1 - cos)
(ii) cote​

Answers

Answered by Tomboyish44
110

Answer:

cotθ = 49/64

Step-by-step explanation:

To find (i):

\Longrightarrow \sf \dfrac{(1+sin\theta)(1-sin\theta)}{(1+cos\theta)(1-cos\theta)}

⇒ Using (a - b)(a + b) = a² - b² we get,

\Longrightarrow \sf \dfrac{1^2-sin^2\theta}{1^2-cos^2\theta}

⇒ Using 1 - sin²θ = cos²θ and  1 - cos²θ = sin²θ we get,

\Longrightarrow \sf \dfrac{cos^2\theta}{sin^2\theta}

⇒ Using cos²θ/sin²θ = cot²θ we get,

\Longrightarrow \sf cot^2\theta

⇒ Using cotθ = 7/8 we get,

\Longrightarrow \sf \left(\dfrac{7}{8}\right)^2

\Longrightarrow \sf \dfrac{49}{64}

Therefore,

\Longrightarrow \sf \dfrac{(1+sin\theta)(1-sin\theta)}{(1+cos\theta)(1-cos\theta)} = \dfrac{49}{64}

_____________________

To find (ii): cot²θ

\Longrightarrow \sf \left(\dfrac{7}{8}\right)^2

\Longrightarrow \sf \dfrac{49}{64}

Similar questions