Math, asked by bhartirajkumar4050, 1 month ago

If cot θ = 7/8 , evaluate
 \frac{(1  \: +  \:  \sin \theta)(1  \: -  \:  \sin \theta)  }{(1  \: +  \:  \cos \theta) (1  \:  -  \:  \cos \theta) }
 \cot^{2} \:   \theta

Answers

Answered by amansharma264
79

EXPLANATION.

cot∅ = 7/8.

As we know that,

cot∅ = 7/8 = Base/perpendicular.

\sf \implies \dfrac{(1 + sin \theta)(1 - sin \theta)}{(1 + cos \theta)(1 - cos \theta)}

As we know that,

Formula of :

⇒ x² - y² = (x + y)(x - y).

Using this formula in equation, we get.

\sf \implies \dfrac{(1 - sin^{2} \theta)}{(1 - cos^{2} \theta)} = \dfrac{cos^{2} \theta}{sin^{2} \theta}

⇒ cot²∅.

Put the value of cot∅ = 7/8 in equation, we get.

⇒ cot²∅ = (7/8)².

⇒ cot²∅ = 49/64.

                                                                                                                     

MORE INFORMATION.

Fundamental trigonometric identities.

(1) = sin²∅ + cos²∅ = 1.

(2) = 1 + tan²∅ = sec²∅.

(3) = 1 + cot²∅ = cosec²∅.

Answered by BrainlyRish
53

Given : \bf \cot \theta = \dfrac{7}{8} \\\\

Exigency To Evaluate :  \sf \dfrac{(1 \: + \: \sin \theta)(1 \: - \: \sin \theta) }{(1 \: + \: \cos \theta) (1 \: - \: \cos \theta) } \\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given that ,

  • \sf \cot \theta = \dfrac{7}{8} \\\\

❍ Basic Formulas of Trigonometry is given by :

\begin{gathered}\boxed { \begin{array}{c c} \\ \dag \qquad \large {\underline {\bf{ Some \:Basic\:Formulas \:For\:Trigonometry \::}}}\\\\ \sf{ In \:a \:Right \:Angled \: Triangle-:} \\\\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered}

Then,

  • \sf \cot \theta = \dfrac{7}{8} \:or\:\dfrac{Base}{Perpendicular}\\\\

Therefore ,

  • Base of Right angled triangle is 7
  • Perpendicular of Right Angled Triangle is 8

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Now ,

  •  \bf \dag\:\:\dfrac{(1 \: + \: \sin \theta)(1 \: - \: \sin \theta) }{(1 \: + \: \cos \theta) (1 \: - \: \cos \theta) } \\\\

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Solving \: the \: Given \:  \::}}\\

 :\implies \:\:\sf \dag\:\:\dfrac{(1 \: + \: \sin \theta)(1 \: - \: \sin \theta) }{(1 \: + \: \cos \theta) (1 \: - \: \cos \theta) } \\\\

As , We know that ,

  • Algebraic Identity = a² - b² = (a + b ) ( a - b )

 :\implies \:\:\sf \:\:\dfrac{(1 \: -\: \sin^2 \theta) }{(1 \: - \: \cos^2 \theta)  } \\\\

As , We know that ,

  •  1 - \sin^2 \theta  = \cos^2 \theta

And ,

  •  1 - \cos^2 \theta  = \sin^2 \theta

 :\implies \:\:\sf \dfrac{(\: \cos^2 \theta) }{( \: \sin^2 \theta)  } \\\\

As , We know that ,

  • \cot^2 \theta = \dfrac{\cos^2 \theta }{\sin^2 \theta }\\

 :\implies \:\:\sf   \dfrac{(\: \cos^2 \theta) }{( \: \sin^2 \theta) } \:\: = \:\: \cot ^2 \theta    \\\\

As , We know that ,

  • \cot^2 \theta =\bigg( \dfrac{Base }{Perpendicular }\bigg) ^2 \\

Here,

  • Base of Right angled triangle is 7
  • Perpendicular of Right Angled Triangle is 8

Then ,

  •  :\implies \:\:\sf  \:\: \cot ^2 \theta = \bigg( \dfrac{7}{8}\bigg)^2  \\\\

 :\implies \:\:\bf  \:\: \cot ^2 \theta = \bigg( \dfrac{49}{64}\bigg)\:\:\longrightarrow \:AnswEr \\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\boxed{\begin{array}{cc} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{array}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions