If cot A= 1/√3 then find cosecA+ cosA/ secA- sinA
Answers
Answered by
1
CotA = cot 60.
A= 60
Putting A=60 in the given equation.
=>Cosec 60 +cos 60 /sec 60 - sin 60
Then you can solve further
A= 60
Putting A=60 in the given equation.
=>Cosec 60 +cos 60 /sec 60 - sin 60
Then you can solve further
Answered by
1
cot A = 1/√3 by using a right angle triangle mark the Ф on point A
= B/P
by using the pythagoras theoram
(H)² = (B)² + (P)²
(AC)² = (AB)² + (BC)²
AC² = (1)² + (√3)²
AC² = 1 + 3
AC² = 4
AC = √4
AC 2
COSEC A = H/P = 2/√3
COS A = B/H = 1/2
SEC A = H/B = 2/1
SIN A = P/H = √3/2
cosecФ + cosФ/secФ - sinФ
2/√3 + 1 /2/2 - √3/2
2/√3 + 1/4 - √3/2
8 + √3 - 6
___________
4√3
(2+√3 ) /4√3
Hope! it will be helpful for you
Similar questions
Geography,
7 months ago
Math,
7 months ago
Math,
7 months ago
Math,
1 year ago
Psychology,
1 year ago
English,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago