If cot A/2=√1+a/1-a cot theta/2 then cos theta=
Answers
Answered by
0
Answer:
I don't know the answer
pls keep properly
Answered by
1
Answer:cosA-a/1-acosA
Step-by-step explanation:
We have, cotA/2=√1+a/1-a cot(theta/2)
cot^2 A/2=(1+a/1-a)cot^2(theta/2)
(cos^2 A/2 / sin^2 A/2)(1-a/1+a) =cos^2(theta/2) / sin^2(theta/2)
(1+cosA)(1-a) / (1-cosA)(1+a)=1+cos(theta)/1-cos(theta)
1-a-acosA+cosA / 1+a-acosA-cosA =1+cos(theta / 1-cos(theta)
Apply componendo and dividendo method,
2(1-acosA)/2(cosA-a)=2/2cos(theta)
cos(theta)=cosA-a/1-acosA
Similar questions