Math, asked by kareenarabha449, 1 month ago

. If cot A = 5/12, sec A and sinA.​

Answers

Answered by CopyThat
84

Answer :

  • Sec A = 13/5 and Sin A = 12/13.

Given :

  • Cot A = 5/12.

To find :

  • Sec A and Sin A.

Solution :

Consider ΔABC,

Using Pythagoras theorem:

AC² = AB² + BC²

⇒ AC² = 12² + 5²

⇒ AC² = 144 + 25

⇒ AC² = 169

⇒ AC = √169

AC = 13 cm

We know,

Sin A = Opposite/Hypotenuse

⇒ Sin A = 12/13

Sec A = Hypotenuse/Adjacent

⇒ Sec A = 13/5

Must know :

⇒ sin A = opp/hyp

⇒ cos A = adj/hyp

⇒ tan A = opp/adj

⇒ cosec A = hyp/opp

⇒ sec A = hyp/adj

⇒ cot A = adj/opp

Attachments:
Answered by Anonymous
9

Step-by-step explanation:

Question:-If cot A = 5/12, sec A and sinA.?

Answer :-

__________

Sec A = 13/5 and Sin A = 12/13.

✍️Given :-

---➡️Cot A = 5/12.

---➡️Find Sec A and Sin A?

---➡️Consider ΔABC,

Using Pythagoras theorem:

  • AC² = AB² + BC²
  • ⇒ AC² = 12² + 5²
  • ⇒ AC² = 144 + 25
  • ⇒ AC² = 169
  • ⇒ AC = √169
  • ∴ AC = 13 cm

hope this helps you ☺️

Similar questions