. If cot A = 5/12, sec A and sinA.
Answers
Answered by
84
Answer :
- Sec A = 13/5 and Sin A = 12/13.
Given :
- Cot A = 5/12.
To find :
- Sec A and Sin A.
Solution :
Consider ΔABC,
Using Pythagoras theorem:
AC² = AB² + BC²
⇒ AC² = 12² + 5²
⇒ AC² = 144 + 25
⇒ AC² = 169
⇒ AC = √169
∴ AC = 13 cm
We know,
Sin A = Opposite/Hypotenuse
⇒ Sin A = 12/13
Sec A = Hypotenuse/Adjacent
⇒ Sec A = 13/5
Must know :
⇒ sin A = opp/hyp
⇒ cos A = adj/hyp
⇒ tan A = opp/adj
⇒ cosec A = hyp/opp
⇒ sec A = hyp/adj
⇒ cot A = adj/opp
Attachments:
Answered by
9
Step-by-step explanation:
Question:-If cot A = 5/12, sec A and sinA.?
Answer :-
__________
Sec A = 13/5 and Sin A = 12/13.
✍️Given :-
---➡️Cot A = 5/12.
---➡️Find Sec A and Sin A?
---➡️Consider ΔABC,
Using Pythagoras theorem:
- AC² = AB² + BC²
- ⇒ AC² = 12² + 5²
- ⇒ AC² = 144 + 25
- ⇒ AC² = 169
- ⇒ AC = √169
- ∴ AC = 13 cm
hope this helps you ☺️
Similar questions