if cot A = 7/8, find the value of (1+sinA)(1-sinA)/(1+cosA)(1-cosA)
Answers
Answered by
17
=(1+sinA)(1-sinA)/(1+cosA)(1-cosA)
=1-sin^2/1-cos^2
=cos^2/sin^2
=cot^2A
=(7/8)^2
=49/64
=1-sin^2/1-cos^2
=cos^2/sin^2
=cot^2A
=(7/8)^2
=49/64
Answered by
6
hey, here is the ans to ur sol
1-sin^2A/1-cos^2A
=cos^2A/sin^2A
=(cosA/sinA)^2
=cot^2A
(7/8)^2
=49/64
1-sin^2A/1-cos^2A
=cos^2A/sin^2A
=(cosA/sinA)^2
=cot^2A
(7/8)^2
=49/64
Similar questions