Math, asked by priyaramesh1206, 1 month ago

If cot(A+B).cot(A-B)=1 then the value of cot(2A/ 3)

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tt{cot(A+B)\cdot\,cot(A-B)=1}

\sf{\implies\,tan(A+B)\cdot\,tan(A-B)=1}

\sf{\implies\,\dfrac{tan(A)+tan(B)}{1-tan(A)\,tan(B)}\cdot\,\dfrac{tan(A)-tan(B)}{1+tan(A)\,tan(B)}=1}

\sf{\implies\,\dfrac{tan^2(A)-tan^2(B)}{1-tan^2(A)\,tan^2(B)}=1}

\sf{\implies\,tan^2(A)-tan^2(B)=1-tan^2(A)\,tan^2(B)}

\sf{\implies\,tan^2(A)+tan^2(A)\,tan^2(B)-tan^2(B)-1=0}

\sf{\implies\,tan^2(A)(1+tan^2(B))-1(1+tan^2(B))=0}

\sf{\implies\,(tan^2(A)-1)(tan^2(B)+1)=0}

\sf{\implies\,tan^2(A)=1\,\,\,\,\,\,or\,\,\,\,\,\,tan^2(B)=-1}

tan²(x) can not be negative, so,

\sf{\implies\,tan^2(A)=1}

\sf{\implies\,A=\dfrac{\pi}{4}}

Now,

\sf{cot\bigg(\dfrac{2}{3}\cdot\dfrac{\pi}{4}\bigg)}

\sf{=cot\bigg(\dfrac{1}{3}\cdot\dfrac{\pi}{2}\bigg)}

\sf{=cot\bigg(\dfrac{\pi}{6}\bigg)}

\sf{=\sqrt{3}}

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:cot(A + B)cot(A - B) = 1

We know,

\boxed{ \tt{ \: cotx =  \frac{cosx}{sinx}  \: }}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{cos(A + B)}{sin(A + B)}  \times \dfrac{cos(A - B)}{sin(A - B)}  = 1

\rm :\longmapsto\:cos(A + B)cos(A - B) = sin(A + B)sin(A - B)

\rm :\longmapsto\:cos(A + B)cos(A - B)  -  sin(A + B)sin(A - B) = 0

We know,

\boxed{ \tt{ \: cosxcosy - sinxsiny = cos(x + y) \: }}

So, using this, we get

\rm :\longmapsto\:cos(A + B + A - B) = 0

\rm :\longmapsto\:cos(2A) = 0

\rm :\longmapsto\:cos(2A) =cos\dfrac{\pi}{2}

\rm :\longmapsto\:2A = \dfrac{\pi}{2}

\bf\implies \:A = \dfrac{\pi}{4}

Now, Consider

\rm :\longmapsto\:cot\dfrac{2A}{3}

\rm \:  =  \:cot\bigg[\dfrac{2}{3} \times \dfrac{\pi}{4} \bigg]

\rm \:  =  \:cot\dfrac{\pi}{6}

\rm \:  =  \: \sqrt{3}

More to know :-

 \purple{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}}

Similar questions