Math, asked by tsoni8198, 7 months ago

if cotθ = a/b, then the value of ,(a sin θ - b cos θ)/(a sin θ + b cos θ) is? ​

Answers

Answered by VishnuPriya2801
18

Answer:-

Given:

cot θ = a/b

We know,

  • cot θ = cos θ / sin θ

So,

⟶ cos θ / sin θ = a/b

⟶ b cos θ = a sin θ -- equation (1)

We have to find the value of ,

(a sin θ - b cos θ) / (a sin θ + b cos θ)

Writing a sin θ as b cos θ from equation (1) we get,

⟶ (b cos θ - b cos θ) / (b cos θ + b cos θ)

⟶ 0/2b cos θ

⟶ 0

The value of (a sin θ - b cos θ) / (a sin θ + b cos θ) is "0" (zero).

Additional Information:-

  • sin² θ + cos² θ = 1

  • sec² θ - tan² θ = 1

  • cosec² θ - cot² θ = 1

  • sin A = 1/Cosec A

  • cos A = 1/sec A

  • tan A = 1/cot A

  • tan A = sin A/cos A

  • cot A = 1/tan A

  • cot A = cos A/sin A
Answered by SaI20065
55

{ \huge{ \boxed{ \overline{ \mid{ \sf{Solution:-}}}}}}

 \sf{We  \: know,} \\  \\ </p><p></p><p>  \sf{cot \theta = cos \theta/ sin \theta}

 \sf{so}

 \sf{Writing  \: a  \: sin  \: as \:  b \:  cos   \: from \:  equation  \: (1)  \: we  \: get,} \\  \\ </p><p></p><p> \sf{- ( \frac{b \: cos \theta - b \: cos \theta}{b \: cos \theta + b \: cos \theta} )} \\  \\ </p><p></p><p> \sf{ \frac{0}{2 \: b \: cos \theta} }

  \\ \sf{ \frac{ - cos \theta}{sin \theta}  =  \frac{a}{b} } \\  \\ </p><p></p><p> \sf{- cos \theta = a \:  \:  \:  \:  (sin 0 -- equation (1))}

 \sf{We \:  have \:  to  \: find \:  the \:  value \:  of,} \\  \\ </p><p></p><p> \sf{( \frac{a \: sin \theta - b \: cos \theta}{a \: sin \theta + b \: cos \theta} )}

 \implies \huge \sf {\boxed {\boxed{ = 0}}}

 \sf \underline{the \: value \: is \:  {\boxed {\boxed 0}}}

{ \huge{ \boxed{ \overline{ \mid { \sf{Extra \: info:-}}}}}}

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions