if cotθ = a/b, then the value of ,(a sin θ - b cos θ)/(a sin θ + b cos θ) is?
Answers
Answered by
18
Answer:-
Given:
cot θ = a/b
We know,
- cot θ = cos θ / sin θ
So,
⟶ cos θ / sin θ = a/b
⟶ b cos θ = a sin θ -- equation (1)
We have to find the value of ,
(a sin θ - b cos θ) / (a sin θ + b cos θ)
Writing a sin θ as b cos θ from equation (1) we get,
⟶ (b cos θ - b cos θ) / (b cos θ + b cos θ)
⟶ 0/2b cos θ
⟶ 0
∴ The value of (a sin θ - b cos θ) / (a sin θ + b cos θ) is "0" (zero).
Additional Information:-
- sin² θ + cos² θ = 1
- sec² θ - tan² θ = 1
- cosec² θ - cot² θ = 1
- sin A = 1/Cosec A
- cos A = 1/sec A
- tan A = 1/cot A
- tan A = sin A/cos A
- cot A = 1/tan A
- cot A = cos A/sin A
Answered by
55
Similar questions