if cot B = 12/5 , prove that tan² B - sin²B = sin⁴ B sec² B
Answers
Answered by
1
Step-by-step explanation:
tanB=5/12
hypotenuse=√12^2+5^2=√169=13
sinB=5/13. cosB=12/13
tan^2B-sin^2B=25/144 -25/169
=25(169-144)/144*169
=25*25/144*169
multiply and divide by 169
=25*25*169/144*169*169
=(25*25/169*169)*(169/144)
=(5/13)^4*(13/12)^2
=sin^4B*sec^2B
Similar questions