If cot θ + cos θ = m,
and cot θ - cos θ = n,
then prove that,
(m² – n²)² = 16mn
Help... Thanks in advance !
Answers
Answered by
5
Step-by-step explanation:
Let theta =x
m=cosecx-sinx=1/(sinx). - sinx/1= (1-sin^2x)/sinx= cos^2x/sinx.
m=cos^2x/sinx………………(1)
n=secx-cosx=1/cosx -cosx=(1-cos^2x)/cosx= sin^2x/cosx.
n= sin^2x/cosx……………….(2)
(m^2.n)^2/3+(n^2.m)^2/3=?
=(cos^4x/sin^2x×sin^2x/cosx)^2/3+(sin^4x/cos^2x×cos^2x/sinx)^2 /3
=(cos^3x)^2/3+(sin^3x)^2/3
= cos^2x+sin^2x
= 1. Answer.
Welcome
Answered by
0
Let theta =x
m=cosecx-sinx=1/(sinx). - sinx/1= (1-sin^2x)/sinx= cos^2x/sinx.
m=cos^2x/sinx………………(1)
n=secx-cosx=1/cosx -cosx=(1-cos^2x)/cosx= sin^2x/cosx.
n= sin^2x/cosx……………….(2)
(m^2.n)^2/3+(n^2.m)^2/3=?
=(cos^4x/sin^2x×sin^2x/cosx)^2/3+(sin^4x/cos^2x×cos^2x/sinx)^2 /3
=(cos^3x)^2/3+(sin^3x)^2/3
= cos^2x+sin^2x
= 1. Answer.
Welcome
Similar questions
Computer Science,
3 months ago
History,
3 months ago
English,
7 months ago
Social Sciences,
7 months ago
Science,
11 months ago
English,
11 months ago
Physics,
11 months ago