If cotΘ+cosΘ=x and cotΘ -cosΘ=y then x²-y²=
Answers
Answer:
Please refer the image
Step-by-step explanation:
cotΘ + cosΘ = x and cotΘ - cosΘ = y
cosΘ/sinΘ + cosΘ = x and cosΘ/sinΘ - cosΘ = y
(cosΘ + sinΘ.cosΘ)/sinΘ = x and (cosΘ - sinΘ.cosΘ)/sinΘ = y
Squaring both the side,,
(cosΘ + sinΘ.cosΘ)²/sin²Θ = x² and (cosΘ - sinΘ.cosΘ)²/sin²Θ = y²
(cos²Θ + sinΘ.cos²Θ + sin²Θ.cos²Θ)/sin²Θ = x² and (cos²Θ - sinΘ.cos²Θ + sin²Θ.cos²Θ)/sin²Θ = y²
now, x² - y²
= [(cos²Θ + sinΘ.cos²Θ + sin²Θ.cos²Θ)/sin²Θ] - [(cos²Θ - sinΘ.cos²Θ + sin²Θ.cos²Θ)/sin²Θ]
= (cos²Θ + sinΘ.cos²Θ + sin²Θ.cos²Θ)/sin²Θ - (cos²Θ - sinΘ.cos²Θ + sin²Θ.cos²Θ)/sin²Θ
= [(cos²Θ + sinΘ.cos²Θ + sin²Θ.cos²Θ) - (cos²Θ - sinΘ.cos²Θ + sin²Θ.cos²Θ)] / sin²Θ
= (cos²Θ + sinΘ.cos²Θ + sin²Θ.cos²Θ - cos²Θ + sinΘ.cos²Θ - sin²Θ.cos²Θ) / sin²Θ
= (sinΘ.cos²Θ + sinΘ.cos²Θ) / sin²Θ
= (2sinΘ.cos²Θ) / sin²Θ
= (2cos²Θ) / sinΘ
= (2cosΘ . cosΘ) / sinΘ
= 2 cotΘ . cosΘ
The value for x² - y² = 2cotΘ.cosΘ .