Math, asked by chandanbalaji, 2 months ago

If Cot o= 7/8
evalute (1+sin o) (1-sin o)
(1+ Cos o ) (1-Cos o)​

Answers

Answered by mathdude500
2

\large\underline{\sf{Given- }}

\rm :\longmapsto\:cot \theta \:  =  \: \dfrac{7}{8}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\dfrac{(1 + sin\theta)(1 - sin\theta)}{(1 + cos\theta)(1 - cos\theta)}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\green{\boxed{ \bf \:  {sin}^{2}x +  {cos}^{2}x = 1}}

\green{\boxed{ \bf \:\dfrac{cosx}{sinx}  = cotx }}

\green{\boxed{ \bf \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  }}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:cot \theta \:  =  \: \dfrac{7}{8}

Consider,

\rm :\longmapsto\:\dfrac{(1 + sin\theta)(1 - sin\theta)}{(1 + cos\theta)(1 - cos\theta)}

 \rm \:  =  \:  \: \dfrac{1 -  {sin}^{2}\theta }{1 -  {cos}^{2} \theta}

 \rm \:  =  \:  \: \dfrac{ {cos}^{2} \theta}{ {sin}^{2} \theta}

 \rm \:  =  \:  \:  {cot}^{2} \theta

 \rm \:  =  \:  \:  ({cot}\theta)^{2}

 \rm \:  =  \:  \:  {\bigg(\dfrac{7}{8} \bigg) }^{2}

 \rm \:  =  \:  \: \dfrac{49}{64}

\bf\implies \:\:\dfrac{(1 + sin\theta)(1 - sin\theta)}{(1 + cos\theta)(1 - cos\theta)}  = \dfrac{49}{64}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by santhoshpaluru9
0

this is your answer....

Attachments:
Similar questions