Math, asked by pakhi6131, 3 months ago

If cot = root7. show that
cosec^2 -sec^2÷cosec^2+sec^2 =3÷4

Answers

Answered by Anonymous
78

Step-by-step explanation:

\huge\underline{\overline{\mid{\bold{\blue{\mathcal{Question:-}}\mid}}}}

If \: cot \: x \:  =  \sqrt{7}

Show that

 \huge\frac{ {cosec}^{2}x -  {sec}^{2}  x}{ {cosec}^{2} x +  {sec}^{2} x}  =  \frac{3}{4}

\huge\underline{\overline{\mid{\bold{\blue{\mathcal{Hint:-}}\mid}}}}

  • We will prove the Left hand side to the Right hand side by finding the values of cosec x and sec x using cot x and the Pythagoras theorem.

\huge\underline{\overline{\mid{\bold{\blue{\mathcal{Required Solution:-}}\mid}}}}

Given:-

Cot x = √7

or \:  \frac{base}{perpendicular}  =  \frac{ \sqrt{7} }{1}

Using Pythagoras theorem in ∆ ABC [see the attachment]

we have;

 {AC}^{2}  =  {AB}^{2}  +  {BC}^{2}

AC {}^{2}  = 1 + 7 = >  AC =  \sqrt{8}

\mathcal{\green{Now,}}

 \csc(x)  =  \frac{H}{P}  =  \frac{ \sqrt{8} }{1}

 \sec(x)  =  \frac{H}{B}  =  \frac{ \sqrt{8} }{ \sqrt{7} }

\fbox{\purple{Using \ the \ values \ for \ the \ LHS}}

\mathcal{\green{Now,}}

\huge \frac{ \csc(x) ^{2}  -  {sec}^{2} x }{ { \csc(x) }^{2}  +  \sec(x  ) ^{2}  }  =  \frac{ { (\sqrt{8}) }^{2} -  (\frac{ \sqrt{8} }{ \sqrt{7} } ) {}^{2}  }{ { \sqrt{8} }^{2} +  (\frac{ \sqrt{8} }{ \sqrt{7} } ) {}^{2}  }

\huge =  >  \frac{8 -  \frac{8}{7} }{8 +  \frac{8}{7} }

\huge =  >  \frac{ \frac{56 - 8}{7} }{ \frac{56 + 8}{7} }  =  \frac{48}{64}  \div  \frac{16}{16}  =  \frac{3}{4}

\rightarrow\small\bf LHS=RHS

□ Hence, proved.

\mathfrak{\red{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ @MissTranquil}}

Attachments:
Similar questions