Math, asked by swar54342, 10 months ago

if cot teta= 5/12 then find 1+ sin teta 1- sin teta​

Answers

Answered by Anonymous
2

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ value \ of \ (1+sin\theta)(1-sin\theta) \ is \ \frac{-25}{169}}

\sf\orange{Given:}

\sf{\implies{cot\theta=\frac{5}{12}}}

\sf\pink{To \ find:}

\sf{(1+sin\theta)(1-sin\theta)}

\sf\green{\underline{\underline{Solution:}}}

\sf{\implies{cot\theta=\frac{5}{12}}}

\sf{cosec^{2}\theta-cot^{2}\theta=1}

\sf{... Trignometric \ identity}

\sf{\implies{cosec^{2}\theta-(\frac{5}{12})^{2}=1}}

\sf{\implies{cosec^{2}\theta=1+\frac{25}{144}}}

\sf{\implies{cosec^{2}\theta=\frac{144+25}{144}}}

\sf{\implies{cosec^{2}\theta=\frac{169}{144}}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\implies{cosec\theta=\frac{13}{12}}}

\sf{cosec\theta=\frac{1}{sin\theta}}

\sf{... Trignometric \ identity}

\sf{\implies{\therefore{sin\theta=\frac{12}{13}}}}

____________________________________

\sf{\implies{(1+sin\theta)(1-sin\theta)}}

\sf{By \ identity}

\sf{a^{2}-b^{2}=(a+b)(a-b)}

\sf{\implies{\therefore{1-sin^{2}\theta}}}

\sf{\implies{1-sin^{2}\theta}}

\sf{\implies{1-(\frac{12}{13})^{2}}}

\sf{\implies{1-\frac{144}{169}}}

\sf{\implies{\frac{169-144}{169}}}

\sf{\implies{\frac{-25}{169}}}

\sf\purple{\tt{\therefore{The \ value \ of \ (1+sin\theta)(1-sin\theta) \ is \ \frac{-25}{169}}}}

Similar questions