Math, asked by parameshwari71, 6 months ago

if cot teta = 6/8 tge evaluate (1+cos teta) (1-cos teta) /(1-sin teta ) (1+sin teta)​

Answers

Answered by arav821
2

Answer:

9/16

Step-by-step explanation:

{1 +  \cos( \alpha ) }{1  -   \cos( \alpha ) } \div 1 +  \sin( \alpha ) 1 -  \sin( \alpha )

1 ^{2}  -  \ \cos( \alpha ) ^{2}  \div 1^{2}  -  \sin( \alpha )  {}^{2}

  \: as \: 1 -  \cos( \alpha )  {}^{2}  =  \sin( \alpha )  {}^{2}  \\ 1 -  \sin( \alpha )  {}^{2}  =  \cos( \alpha )  {}^{2}

therefore \\  \sin( \alpha )  {}^{2}  \div  \cos( \alpha )  {}^{2}  =  \tan( \alpha )  {}^{2}

 \tan( \alpha  {}^{2} )  = 1 \div  \cot( \alpha )  {}^{2}

 \cot( \alpha )  = 6 \div 8 \\  \cot( \alpha )  {}^{2}  = 9 \div 16

1 \div  \cot( \alpha )  {}^{2}  =  \tan( \alpha )  {}^{2}  = 9 \div 16

PLEASE FOLLOW ME

Similar questions