Math, asked by amanh787, 10 months ago

If cot theta - 1 / cot theta +1 =1-root 3 / 1+root 3. Find the acute angle for class 10 easy please

Answers

Answered by Anonymous
34

Answer:-

 \red{\boxed{ \theta =  \frac{ \pi}{3}  \:  \: o r \: 60 \degree}}

Explanation:-

Condition:-

Acute angles are less then 90°.

Solution :-

 \frac{ \cot( \theta)  - 1}{ \cot( \theta)  + 1}  =  \frac{1 -  \sqrt{3} }{1 +  \sqrt{3} }  \\  \\  \big( \: \cot( \theta)  - 1 \:  \big) \big(1 +  \sqrt{ 3 } \big) = \big( \: \cot( \theta)   + 1 \:  \big) \big(1  -  \sqrt{ 3 } \big) \\  \\  \cot( \theta)  +  \sqrt{3}  \cot( \theta)  - 1 -  \sqrt{3}  =  \cot( \theta)  -  \sqrt{3}  \cot( \theta)  + 1 -  \sqrt{ 3}  \\  \\   \sqrt{3}  \cot( \theta)  +  \sqrt{3}  \cot( \theta)  = 1 + 1 \\  \\ 2 \sqrt{3}  \cot( \theta)  = 2 \\  \\  \cot( \theta)  =  \frac{1}{ \sqrt{3} }  \\  \\  \implies \:  \cot( \theta)  =  \cot(  \frac{ \pi}{3} )  \\  \\  \implies \:  \boxed{ \theta =  \frac{ \pi}{3}  \:  \: o r \: 60 \degree}

Hope it helps you.

Answered by Anonymous
6

Answer:

ans is 60 degrees thanks

Similar questions