Math, asked by kaivalyadasari, 1 year ago

if cot theta + 1/cot theta = 2 , find the value of cot^2 theta + 1/cot 2 theta

Answers

Answered by BEJOICE
12

 \cot \theta +  \frac{1}{ \cot \theta} = 2 \\ squarin \\   {( \cot \theta +  \frac{1}{ \cot \theta}) }^{2}  =  {2}^{2}  = 4 \\  { \cot }^{2} \theta + 2 \times  \cot\theta \times  \frac{1}{ \cot \theta}  +  \frac{1}{ { \cot }^{2}\theta } = 4 \\ { \cot }^{2} \theta + 2 +  \frac{1}{ { \cot }^{2}\theta } = 4 \\ { \cot }^{2} \theta +  \frac{1}{ { \cot }^{2}\theta } = 2
Answered by InesWalston
9

Solution-

Here given,

\cot \theta+\frac{1}{\cot \theta} =2

We have to calculate,

\cot^2 \theta+\frac{1}{\cot^2 \theta}

We know that,

(a+b)^2=a^2+b^2+2ab

Putting,

a=\cot \theta,\ and\ b=\frac{1}{\cot \theta}

\Rightarrow (\cot \theta+\frac{1}{\cot \theta})^2=(\cot \theta)^2+(\frac{1}{\cot \theta})^2+2\times \cot \theta\times \frac{1}{\cot \theta}

\Rightarrow (\cot \theta+\frac{1}{\cot \theta})^2=\cot^2 \theta+\frac{1}{\cot^2 \theta}+2

\Rightarrow (2)^2=\cot^2 \theta+\frac{1}{\cot^2 \theta}+2

\Rightarrow \cot^2 \theta+\frac{1}{\cot^2 \theta}=4-2

\Rightarrow \cot^2 \theta+\frac{1}{\cot^2 \theta}=2

Similar questions