If cot theta = 1/(sqrt(3)) the value of sec^2 theta + cosec ^ 2 theta
Answers
Step-by-step explanation:
Given:
Cot θ = √2 + 1.
Concept Used:
Cot θ = Base/Perpendicular
Cosec θ = Hypotenuse/Perpendicular
Sec θ = Hypotenuse/Base
Calculation:
Cot θ = B/P = (√2 + 1)/1
By Pythagoras theorem,
⇒ H2 = P2 + B2
⇒ H2 = 12 + (√2 + 1)2
⇒ H2 = 1 + 2 + 1 + 2√2
⇒ H2 = 4 + 2√2
Cosec θ × Sec θ
⇒ H/P × H/B
⇒ H2/BP
⇒ (4 + 2√2)/(√2 + 1) × 1
⇒ (4 + 2√2)/(√2 + 1)
⇒ [(√2 + 1) × (2√2)] / (√2 + 1)
⇒ 2√2
∴ The value of Cosec θ × Sec θ is 2√2.
We know,
Cosec2θ = 1 + Cot2θ
Sec2θ = 1 + Tan2θ
So, Sec θ × Cosec θ
⇒ √(1 + tan2θ) × √(1 + Cot2θ)
⇒ √ [1 + {1/(√2 + 1)}2] × [1 + (√2 + 1)2] ....(i)
The value of 1/(√2 + 1)
⇒ 1× (√2 - 1) /(√2 + 1) × (√2 - 1)
⇒ (√2 - 1)/2 - 1
⇒ (√2 - 1)
Putting in equation (i)
⇒ √ [1 + {1/(√2 + 1)}2] × [1 + (√2 + 1)2]
⇒ √ [1 + (√2 - 1)2] × [1 + (√2 + 1)2]
⇒ √(4 - 2√2) × (4 - 2√2)
⇒ √16 - 8 = √8
⇒ 2√2
∴ The value of Cosec θ × Sec θ is 2√2.