Math, asked by vijay332313, 1 year ago

if cot theta = 12/5 show that tan^2 theta -sin^2 theta =sin^2 theta tan^2 theta

Answers

Answered by divyakshi09
6
Here is your answer.thanks for asking
Attachments:

vijay332313: thank you
divyakshi09: wlc
Answered by mysticd
3

i) Given \: cot \:theta = \frac{12}{5}\: ---(1)

 ii )tan^{2} \theta \\= \frac{1}{cot^{2} \theta } \\= \Big( \frac{5}{12}\Big)^{2} \\= \frac{25}{144} \: ---(2)

/* We know the Trigonometric Identity */

 \boxed{ \pink { cosec^{2} \theta= 1 + cot^{2} \theta }}

 iii )Cosec^{2} \theta = 1 + \Big(\frac{12}{5}\Big)^{2} \\= 1 + \frac{144}{25} \\= \frac{25+144}{25}\\= \frac{169}{25} \: --(3)

iv)  Sin^{2} \theta = \frac{1}{cosec^{2} \theta }\\= \frac{25}{169} \: ---(4)

 Now, LHS = tan^{2} \theta - sin^{2} \theta \\= \frac{25}{144} - \frac{25}{169} \\=25 \Big( \frac{1}{144} - \frac{1}{169} \Big) \\= 25 \Big( \frac{169-144}{144\times 169} \Big )\\= 25 \times \frac{ 25}{ 144\times 169}\\= \frac{25}{169} \times \frac{25}{144} \\= sin^{2} \theta \times tan^{2} \theta \\= RHS

 Hence \:proved .

•••♪

Similar questions