Math, asked by riyasahu7863, 7 months ago

if cot theta =15/8 then evaluate (1+sin theta) (1-sin theta) / ( 1+cos theta) (1-cos theta)​

Answers

Answered by rocky200216
19

\huge\bold{\underbrace{\red{SOLUTION:-}}}

GIVEN :-

  • \rm{\cot\theta\:=\:\dfrac{15}{8}\:}

FORMULA :-

  • \rm{\green{{(a\:+\:b)}{(a\:-\:b)}\:=\:a^2\:-\:b^2\:}}----(1)

  • \rm{\red{\dfrac{\sin\theta}{\cos\theta}\:=\:\tan\theta\:}}

  • \rm{\orange{\dfrac{\cos\theta}{\sin\theta}\:=\:\cot\theta\:}}

  • \rm{\blue{\cosec^2\theta\:-\:\cot^2\theta\:=\:1\:}}

  • \rm{\implies\:\cosec^2\theta\:-\:1\:=\:\cot^2\theta\:}

CALCULATION :-

 \frac{(1 +  \sin\theta)(1 -  \sin \theta)  }{(1 +  \cos \theta)(1 -  \cos \theta)  }

✍️ Here, in numerator

  • a = 1 and b = sinθ

✍️ In denominator,

  • a = 1 and b = cosθ

✍️ Now putting the formula (1), we get

 =  \frac{1 -  { \sin^{2} \theta }  }{1 -  { \cos^{2} \theta } }

✍️ Now, dividing ‘sin²θ’ in both numerator and denominator .

 =  \frac{ \frac{1 -  { \sin^{2} \theta }  }{ { \sin^{2} \theta } } }{ \frac{1 -  { \cos^{2} \theta } }{ { \sin^{2} \theta } } }  \\  \\  =  \frac{ \frac{1}{ { \sin^{2} \theta } } -  \frac{  { \sin^{2} \theta }  }{ { \sin^{2} \theta } }  }{ \frac{1}{ { \sin^{2} \theta } } -  \frac{ { \cos^{2} \theta } }{ { \sin^{2} \theta } }  }  \\  \\  =  \frac{ { \cosec^{2} \theta } - 1 }{ { \cosec^{2} \theta } -  { \cot^{2} \theta }  }  \\  \\  =  \frac{ { \cot^{2} \theta } }{1}   \\  \\  =  {( \cot \theta )}^{2}

✍️ Now put the value of ‘cotθ’ , we get

\rm{=\:(\dfrac{15}{8})^2\:}

\rm{=\:\dfrac{225}{64}\:}

\bigstar\:\mathcal{\purple{\boxed{\dfrac{(1\:+\:\sin\theta)\:(1\:-\:\sin\theta)}{(1\:+\:\cos\theta)\:(1\:-\:\cos\theta)}\:=\:\dfrac{225}{64}\:}}}

Similar questions