Math, asked by rakshatha80, 9 months ago

if cot theta =3/5 then what is the value of 6 tan theta-5cos theta​

Answers

Answered by BrainlyConqueror0901
10

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{6\:tan\:\theta-5\:cos\:\theta=7.42}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies cot \: \theta =  \frac{3}{5}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies 6 \: tan \:  \theta - 5 \: cos \:  \theta = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies cot \: \theta =  \frac{3}{5}  \\  \\ \tt:  \implies  \frac{b}{p}  =  \frac{3}{5}  \\  \\  \tt \circ \: base = 3 \\  \\  \tt \circ \:   perpendicular = 5 \\ \\   \bold{As \: we \: know \: that} \\  \tt:  \implies h =  \sqrt{ {p}^{2}  +  {b}^{2} }  \\  \\\tt:  \implies h = \sqrt{ {5}^{2}  +  {3}^{2} }   \\  \\ \tt:  \implies h = \sqrt{25 + 9}   \\  \\ \tt:  \implies h =  \sqrt{34}  \\    \\  \bold{for \: finding \: value} \\ \tt:  \implies 6 \:tan \:  \theta - 5 \: cos \:  \theta \\  \\ \tt:  \implies 6 \times  \frac{p}{b}  - 5 \times  \frac{b}{h}    \\  \\ \tt:  \implies 6 \times  \frac{5}{3 }  - 5 \times  \frac{3}{ \sqrt{34} }  \\  \\ \tt:  \implies 2 \times 5 -  \frac{15}{ \sqrt{34} }  \\  \\ \tt:  \implies  \frac{10 \sqrt{34}  - 15}{ \sqrt{34} }  \\  \\ \tt:  \implies  \frac{10 \times 5.83 - 15}{5.83}  \\  \\ \tt:  \implies  \frac{58.3 - 15}{5.83}  \\  \\  \green{\tt:  \implies 7.42}

Answered by Anonymous
44

\red{\bold{\underline{\underline{Answer:}}}}

\purple{\therefore{6\:tan\:\theta-5\:cos\:\theta=\frac{10\sqrt{34}-15}{\sqrt{34}}}}\\

\orange{\bold{Step-by-step\:explanation:}}

  • Given

》cos theta = 3/5

  • To find

》6 tan theta - 5 cos theta = ?

  • ATQ :

 \bold{Using\:trignometrical\:identity} \\  \implies cot \: \theta =  \frac{3}{5}  \\  \\ \implies  \frac{b}{p}  =  \frac{3}{5}  \\  \\  \text{base = 3} \\  \\   \text{ perpendicular = 5} \\   \\ \  \text{h = } \sqrt{34}  \\    \\  \bold{For\:given\:question} \\ \implies 6 \:tan \:  \theta - 5 \: cos \:  \theta \\  \\ \implies 6 \times  \frac{p}{b}  - 5 \times  \frac{b}{h}    \\  \\  \implies 6 \times  \frac{5}{3 }  - 5 \times  \frac{3}{ \sqrt{34} }  \\  \\ \implies 2 \times 5 -  \frac{15}{ \sqrt{34} }  \\  \\ \purple{\implies  \frac{10 \sqrt{34}  - 15}{ \sqrt{34} } }

Similar questions