if cot theta = 5/4 then find the values of 5 sin theta + 3 cos theta / 5 sin theta - 2 cos theta
Answers
➝Correct Question :
If , then find the value of:
➝ Find :
The value of :
➝ Given :
The value of
➝ We Know :
The trigonometrical identity of
Where,
- b = base of the triangle
- p = height of triangle
- h = hypotenuse of the triangle
Pythagoras theorem :
Where,
- h = Hypotenuse
- p = height
- b = base
➝ Concept :
According to the given information,that , and the identity that ,we got the base and height of the the triangle ..i.e,
- Height = 4 units
- base = 3 units
From the above information of base and height , we can find the value of Hypotenuse by the Pythagoras theorem..
Pythagoras theorem :
By using it ,and putting the value of height and base in the formula ,we get :
Hence ,the hypotenuse of the triangle is 5 units.
By putting the value of different trigonometric identities , we can find the value of the given Equation :
(As )
(As )
➝ Solution :
We now know that :
Putting the value in the Equation ,
we get :
Hence ,the value of is
➝ Extra Information :
Some Trigonometrical identities :
Answer:
[tex]
➝Correct Question :
If cot\:\theta = \dfrac{3}{4}cotθ=
4
3
, then find the value of:
5sin\:\theta + \dfrac{3cos\:\theta}{5sin\:\theta} - 2cos\:theta5sinθ+
5sinθ
3cosθ
−2costheta
➝ Find :
The value of :
\boxed{\mathtt{5sin\:\theta + \dfrac{3cos\:\theta}{5sin\:\theta} - 2cos\:theta}}
5sinθ+
5sinθ
3cosθ
−2costheta
➝ Given :
The value of cot\:\thetacotθ
\rightarrow cot\:\theta = \dfrac{3}{4}→cotθ=
4
3
➝ We Know :
The trigonometrical identity of
cot\:\theta = \dfrac{b}{p}cotθ=
p
b
sin\:\theta = \dfrac{p}{h}sinθ=
h
p
cos\:\theta = \dfrac{b}{h}cosθ=
h
b
Where,
b = base of the triangle
p = height of triangle
h = hypotenuse of the triangle
Pythagoras theorem :
\boxed{\mathtt{h^{2} = p^{2} + b^{2}}}
h
2
=p
2
+b
2
Where,
h = Hypotenuse
p = height
b = base
➝ Concept :
According to the given information,that cot\:\theta = \dfrac{3}{4}cotθ=
4
3
, and the identity that cot\:\theta = \dfrac{b}{p}cotθ=
p
b
,we got the base and height of the the triangle ..i.e,
Height = 4 units
base = 3 units
From the above information of base and height , we can find the value of Hypotenuse by the Pythagoras theorem..
Pythagoras theorem :
\mathtt{h^{2} = p^{2} + b^{2}}h
2
=p
2
+b
2
By using it ,and putting the value of height and base in the formula ,we get :
\mathtt{\Rightarrow h^{2} = 4^{2} + 3^{2}}⇒h
2
=4
2
+3
2
\mathtt{\Rightarrow h = \sqrt{4^{2} + 3^{2}}}⇒h=
4
2
+3
2
\mathtt{\Rightarrow h = \sqrt{16 + 9}}⇒h=
16+9
\mathtt{\Rightarrow h = \sqrt{25}}⇒h=
25
\mathtt{\Rightarrow h = 5 units}⇒h=5units
Hence ,the hypotenuse of the triangle is 5 units.
By putting the value of different trigonometric identities , we can find the value of the given Equation :
sin\:\theta = \dfrac{4}{5}sinθ=
5
4
(As sin\:\theta = \dfrac{p}{h}sinθ=
h
p
)
cos\:\theta = \dfrac{3}{5}cosθ=
5
3
(As cos\:\theta = \dfrac{b}{h}cosθ=
h
b
)
➝ Solution :
We now know that :
sin\:\theta = \dfrac{4}{5}sinθ=
5
4
cos\:\theta = \dfrac{3}{5}cosθ=
5
3
Putting the value in the Equation ,
5sin\:\theta + \dfrac{3cos\:\theta}{5sin\:\theta} - 2cos\:theta5sinθ+
5sinθ
3cosθ
−2costheta
we get :
\mathtt{\Rightarrow 5 \times \dfrac{4}{5} + \dfrac{3 \times \dfrac{3}{5}}{5} \times \dfrac{4}{5} - 2 \times \dfrac{3}{5}}⇒5×
5
4
+
5
3×
5
3
×
5
4
−2×
5
3
\mathtt{\Rightarrow \cancel{5} \times \dfrac{4}{\cancel{5}} + \dfrac{3 \times \dfrac{3}{5}}{\cancel{5} \times \dfrac{4}{\cancel{5}}} - 2 \times \dfrac{3}{5}}⇒
5
×
5
4
+
5
×
5
4
3×
5
3
−2×
5
3
\mathtt{\Rightarrow 4 + \dfrac{\dfrac{9}{5}}{4} - \dfrac{6}{5}}⇒4+
4
5
9
−
5
6
\mathtt{\Rightarrow 4 + \dfrac{9}{5} \times 4 - \dfrac{6}{5}}⇒4+
5
9
×4−
5
6
\mathtt{\Rightarrow 4 + \dfrac{36}{5} - \dfrac{6}{5}}⇒4+
5
36
−
5
6
\mathtt{\Rightarrow \dfrac{20 + 36 - 6}{5}}⇒
5
20+36−6
\mathtt{\Rightarrow \dfrac{56 - 6}{5}}⇒
5
56−6
\mathtt{\Rightarrow \dfrac{50}{5}}⇒
5
50
\mathtt{\Rightarrow \dfrac{\cancel{50}}{\cancel{5}}}⇒
5
50
\mathtt{\Rightarrow 10}⇒10
Hence ,the value of 5sin\:\theta + \dfrac{3cos\:\theta}{5sin\:\theta} - 2cos\:theta5sinθ+
5sinθ
3cosθ
−2costheta is \mathtt{10}10
➝ Extra Information :
Some Trigonometrical identities :
sin^{2}\theta + cos^{2}\theta = 1sin
2
θ+cos
2
θ=1
sec^{2}\theta - tan^{2}\theta = 1sec
2
θ−tan
2
θ=1
cosec^{2}\theta - cot^{2}\theta = 1cosec
2
θ−cot
2
θ=1
sin(A + B) = sinAcosB + cosAsinBsin(A+B)=sinAcosB+cosAsinB
sin(A - B) = sinAcosB - cosAsinBsin(A−B)=sinAcosB−cosAsinB
cos(A + B) = cosAcosB - sinAsinBcos(A+B)=cosAcosB−sinAsinB
cos(A - B) = cosAcosB + sinAsinBcos(A−B)=cosAcosB+sinAsinB
[/tex]