Math, asked by mehak52775, 1 year ago

if cot theta=7/8, evaluate

\frac{(1 + sin(theta))(1 - sin(theta))}{(1 + \cos (theta))(1 - \cos (theta))}
.
.
. PLEASE DON'T SPAM OR YOUR ANSWER WILL BE REPORTED

Answers

Answered by Anonymous
4

Given that :

 \cot\alpha  =  \frac{7}{8}  =  \frac{b}{p}

According to the Pythagoras theoram :

H² = P² + B²

=> H = √64+49 = √113

Now,

 \sin \alpha  =  \frac{p}{h}  =  \frac{8}{ \sqrt{113} }

And,

 \cos \alpha  =  \frac{b}{h}  =  \frac{7}{ \sqrt{113} }

According to the question :

 \frac{(1 +  \sin\alpha)(1 -  \sin \alpha )   }{(1 +  \cos \alpha )(1 -  \cos\alpha )  }  \\  \\  =  >  \frac{1 -  { \sin }^{2}  \alpha }{1 -  { \cos}^{2} \alpha  }  =  \frac{1 -  \frac{64}{113} }{1 -  \frac{49}{113} }  \\  \\  =  >  \frac{113 - 64}{113 - 49}   =  \frac{49}{64}

I hope it will be helpful for you ☺️☺️

Mark it as brainliest and....

✌️_____ Fóllòw _____✌️

Similar questions