Math, asked by armangd2007, 23 hours ago

If Cot theta =√9-x^2 find sec theta. tan theta​

Answers

Answered by chandan454380
1

Answer:

The answer is \frac{\sqrt{10-x^2}}{9-x^2}

Step-by-step explanation:

Given \cot \theta=\sqrt{9-x^2}

So \tan \theta=\frac{1}{\cot \theta}=\frac{1}{\sqrt{9-x^2}}

Now using, \sec^2\theta-\tan^2\theta=1

\Rightarrow \sec^2\theta-\frac{1}{9-x^2}=1\\\Rightarrow \sec^2\theta=1+\frac{1}{9-x^2}=\frac{9-x^2+1}{9-x^2}=\frac{10-x^2}{9-x^2}\\\\\therefore \sec\theta=\frac{\sqrt{10-x^2}}{\sqrt{9-x^2}}

Thus

\sec \theta\cdot \tan\theta=\frac{\sqrt{10-x^2}}{\sqrt9-x^2}\cdot \frac{1}{\sqrt{9-x^2}}=\frac{\sqrt{10-x^2}}{9-x^2}

Similar questions