If cot theta+cos theta =m and cot theta - cos theta =n then prove tht (m^2-n^2)^2=16mn
Answers
Answered by
83
HELLO D,
cottheta + costheta = m
cottheta - costheta = n
now,
(m² - n²)² = [(m - n)(m + n)]²
[ (cottheta + costhet - cottheta + costheta)(cottheta - costhet + cottheta + costheta) ]²
[ (2costheta)(2cottheta) ] ²
[ 16(cot²theat) . (cos²theta) ]-----------( 1 )
now,
16mn
16(cottheta + costheta)(cottheta - costheta)
16(cot²theta - cos²theta)
16(cos²theta / sin²theta - cos²theta)
16(cos²theta - cos²theta . sin²theta)/sin²theta
16(cos²theta(1 - sin²theta)/sin²theta
16(cos²theta . cos²theta)/sin²theta
16(cos²theta/sin²theta . cos²theta)
16(cot²theta . cos²theta)------------( 2 )
from-----( 1 ) & -----( 2 )
[(m² - n²)]² = 16(mn)
I HOPE ITS HELP YOU DEAR,
THANKS
cottheta + costheta = m
cottheta - costheta = n
now,
(m² - n²)² = [(m - n)(m + n)]²
[ (cottheta + costhet - cottheta + costheta)(cottheta - costhet + cottheta + costheta) ]²
[ (2costheta)(2cottheta) ] ²
[ 16(cot²theat) . (cos²theta) ]-----------( 1 )
now,
16mn
16(cottheta + costheta)(cottheta - costheta)
16(cot²theta - cos²theta)
16(cos²theta / sin²theta - cos²theta)
16(cos²theta - cos²theta . sin²theta)/sin²theta
16(cos²theta(1 - sin²theta)/sin²theta
16(cos²theta . cos²theta)/sin²theta
16(cos²theta/sin²theta . cos²theta)
16(cot²theta . cos²theta)------------( 2 )
from-----( 1 ) & -----( 2 )
[(m² - n²)]² = 16(mn)
I HOPE ITS HELP YOU DEAR,
THANKS
Harshishakthi30:
Thank u!!
Answered by
10
Answer: note :@=theta
Firstly put the value of mn in ( m^2-n^2)^2
We get,
={(Cot@+cos@)^2-(cot@-cos@)^2}^2
we know that,a^2-b^2=(a+b)(a-b)
={(Cot@+cos@)-(cotx+cos@)-(cot@-cos@)(cot@+cos@)}
={(2cos@)(2cot@)}
={16(cot^2@)×(cos^2@)}. -----
(1st equation)
=16(cot@+cos@)(cot@-cos@)
=16(cot^2@-cos^2@)
=16(cos^2@/sin^2-cos^2@/1)
=16(cos^2@-cos^2×sin^2@)
=16{cos^2@(1-sin^2)/sin^2@}
=16(cos^2@×cos^2@/sin^2@)
=16(cos^2@/sin^2@×cos^2@
=16(cot^2@×cos^2@)-------(2) equation
From (1) and (2)
[(m^2-n^2)]^2=16mn
Step-by-step explanation:
Similar questions