If cot theta+cos theta = m and cot theta - cos theta = n then (m² - n²)² is equal to:
Answers
Answered by
1
Answer:
please mark as brainliest answer.
Step-by-step explanation:
cottheta + costheta = m
cottheta - costheta = n
now,
(m² - n²)² = [(m - n)(m + n)]²
[ (cottheta + costhet - cottheta + costheta)(cottheta - costhet + cottheta + costheta) ]²
[ (2costheta)(2cottheta) ] ²
[ 16(cot²theat) . (cos²theta) ]-----------( 1 )
now,
16mn
16(cottheta + costheta)(cottheta - costheta)
16(cot²theta - cos²theta)
16(cos²theta / sin²theta - cos²theta)
16(cos²theta - cos²theta . sin²theta)/sin²theta
16(cos²theta(1 - sin²theta)/sin²theta
16(cos²theta . cos²theta)/sin²theta
16(cos²theta/sin²theta . cos²theta)
16(cot²theta . cos²theta)------------( 2 )
from-----( 1 ) & -----( 2 )
[(m² - n²)]² = 16(mn)
I HOPE ITS HELP YOU
Answered by
0
Answer:
16mn
.
.
.
.
Hope it helps!(◕ᴗ◕✿)
Attachments:
Similar questions