Math, asked by tulika998, 11 months ago

if cot theta=cos (x+y) and cot phy =cos (x-y) then prove it tan(theta-phy)=2sinxsiny/cos square x+cos square y​

Answers

Answered by MaheswariS
48

Answer:

tan(\theta-\phi)=\frac{2sinx\:siny}{cos^2x+cos^2y}

Step-by-step explanation:

Formula used:

tan(A-B)=\frac{tanA-tanB}{1+tanA\:tanB}

cos(A-B)=cosA\:cosB+sinA\:sinB

cos(A+B)=cosA\:cosB-sinA\:sinB

cos(A+B).cos(A-B)=cos^2A-sin^2B

Given:

cot\theta=cos(x+y)

Taking reciprocals, we get

tan\theta=\frac{1}{cos(x+y)}

and

cot\phi=cos(x-y)

Taking reciprocals, we get

tan\phi=\frac{1}{cos(x-y)}

Now,

tan(\theta-\phi)

=\frac{tan\theta-tan\phi}{1+tan\theta.tan\phi}

=\frac{\frac{1}{cos(x+y)}-\frac{1}{cos(x-y)}}{1+\frac{1}{cos(x+y)}.\frac{1}{cos(x-y)}}

=\frac{\frac{cos(x-y)-cos(x+y)}{cos(x+y)\:cos(x-y)}}{1+\frac{1}{cos(x+y)\:cos(x-y)}}

=\frac{cos(x-y)-cos(x+y)}{cos(x+y)\:cos(x-y)+1}

=\frac{(cosx\:cosy+sinx\:siny)-(cosx\:cosy-sinx\:siny)}{cos^2x-sin^2y+1}

=\frac{cosx\:cosy+sinx\:siny-cosx\:cosy+sinx\:siny}{cos^2x+(1-sin^2y)}

=\frac{2sinx\:siny}{cos^2x+(1-sin^2y)}

=\frac{2sinx\:siny}{cos^2x+cos^2y}

Answered by MichSuchana91
6

Answer=(c da attachment)

So, lhs = rhs

Hence proved.

Attachments:
Similar questions