Math, asked by sahbaz67761, 9 months ago

If cot(theta) +cot(pi/4+theta) =2, then the general value of theta​

Answers

Answered by rashich1219
7

Given:

If cot(theta) +cot(pi/4+theta) =2.

To Find:

Value of theta?

Solution:

it is given that-

cot(theta) +cot(pi/4+theta) =2

on solving this , we get

\dfrac{{\sin \left( {\dfrac{\pi }{4} + \theta  + \theta } \right)}}{{\sin \theta .\sin \left( {\dfrac{\pi }{4} + \theta } \right)}} = 2 \hfill \\

\dfrac{{\sin \dfrac{\pi }{4}\cos 2\theta  + \cos \dfrac{\pi }{4}\sin 2\theta }}{{\sin \dfrac{\pi }{4}\cos \theta  + \cos \dfrac{\pi }{4}\sin \theta }} = 2\sin \theta  \hfill \\

\dfrac{{\cos 2\theta  + \sin 2\theta }}{{\cos \theta  + \sin \theta }} = 2\sin \theta  \hfill \\\\  \cos 2\theta  + \sin 2\theta  = 2\sin \theta \cos \theta  + 2{\sin ^2}\theta  \hfill \\

(1 - 2{\sin ^2}\theta ) + \sin 2\theta  = \sin 2\theta  + 2{\sin ^2}\theta  \hfill \\\\  1 = 4{\sin ^2}\theta  \hfill \\\\  \sin \theta  = \frac{1}{2} = \sin \frac{\pi }{6} \hfill \\\\  \theta  = \frac{\pi }{6} \hfill \\

Similar questions