Math, asked by yuvamoniyuvi12, 11 months ago

If cot theta is equal to 2 find the value of all trigonometry ratios of theta​

Answers

Answered by Anonymous
6

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

If cot theta is equal to 2 find the value of all trigonometry ratios of theta .

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{Given}}}}

  • \sf{\:\cot \theta\:=\:\dfrac{2}{1}}

\Large{\underline{\mathfrak{\bf{Find}}}}

  • The value of all trigonometry ratios of theta .

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

We know,

\boxed{\small{\sf{\pink{\:\cot \theta\:=\:\dfrac{Base}{perpendicular}}}}}

In, A/c to this Attachment

\boxed{\small{\sf{\pink{\:Hypotenuse\:=\:\sqrt{(Base)^2+(perpendicular)^2}}}}} \\ \\ \mapsto\sf{\:Hypetenuse\:=\:\sqrt{(2)^2+(1)^2}} \\ \\ \mapsto\sf{\:Hypotenuse\:=\:\sqrt{4+1}} \\ \\ \mapsto\sf{\orange{\:Hypotenuse(AC)\:=\:\sqrt{5}}}

Now, calculate other trigonometry ratio , and a/c to attachment

First:-

\boxed{\small{\sf{\pink{\:\sin \theta\:=\:\dfrac{perpendicular}{hypotenuse}\:=\:\dfrac{AB}{AC}}}}} \\ \\ \mapsto\sf{\:\sin \theta\:=\:\dfrac{1}{\sqrt{5}}\:\:\:\:\:Ans.}

Second:-

\boxed{\small{\sf{\pink{\:\cos \theta\:=\:\dfrac{base}{hypotenuse}\:=\:\dfrac{BC}{AC}}}}} \\ \\ \mapsto\sf{\:\cos \theta\:=\:\dfrac{2}{\sqrt{5}}\:\:\:\:\:Ans.}

Third:-

\boxed{\small{\sf{\pink{\:\tan \theta\:=\:\dfrac{perpendicular}{base}\:=\:\dfrac{AB}{BC}}}}} \\ \\ \mapsto\sf{\:\tan \theta\:=\:\dfrac{1}{2}\:\:\:\:\:Ans.}

Fourth:-

\boxed{\small{\sf{\pink{\:\sec \theta\:=\:\dfrac{hypotenuse}{base}\:=\:\dfrac{AC}{BC}}}}} \\ \\ \mapsto\sf{\:\sec \theta\:=\:\dfrac{\sqrt{5}}{2}\:\:\:\:\:Ans.}

Fifth:-.

\boxed{\small{\sf{\pink{\:\cosec \theta\:=\:\dfrac{hypotenuse}{perpendicular}\:=\:\dfrac{AC}{AB}}}}} \\ \\ \mapsto\sf{\:\cosec \theta\:=\:\dfrac{\sqrt{5}}{1}\:\:\:\:\:Ans.}

Attachments:
Answered by JanviMalhan
206

 \:

Statement:

If cot theta = 2 then find all the trigonometry ratios of theta

Then by Pythagoras theorem

AB^2 + BC^2 = AC^2

1^2+ 2^2 =AC^2

1+4=AC^2

5=AC^2

√5=AC

Therefore the values of all the trigonometric ratios are =

Sin theta=1/√5

Cos theta=2/√5

Tan theta=1/2

Cosec theta=√5/1

Sec theta=√5/2

Similar questions