If cot theta is equal to root 7 then show that cosec squared theta minus sec square theta by cos square theta + sec square theta is equal to 3 by 4
Answers
/* Multiplying numerator and denominator by
, we get */
Therefore.,
•••♪
Step-by-step explanation:
Given ,\: cot\:theta = \sqrt{7} \: ---(1)Given,cottheta=
7
−−−(1)
Value \: of \: \frac{cosec^{2} \theta - sec^{2} \theta }{ cosec^{2} \theta + sec^{2} \theta }Valueof
cosec
2
θ+sec
2
θ
cosec
2
θ−sec
2
θ
/* Multiplying numerator and denominator by
cos^{2} \thetacos
2
θ , we get */
= \frac{cos^{2} \theta(cosec^{2} \theta - sec^{2} \theta) }{cos^{2} \theta ( cosec^{2} \theta + sec^{2} \theta) }=
cos
2
θ(cosec
2
θ+sec
2
θ)
cos
2
θ(cosec
2
θ−sec
2
θ)
= \frac{cos^{2} \theta\big( \frac{1}{sin^{2} \theta} - \frac{1}{cos^{2} \theta}\big)}{cos^{2} \theta \big(\frac{1}{sin^{2} \theta} + \frac{1}{cos^{2} \theta}\big)}=
cos
2
θ(
sin
2
θ
1
+
cos
2
θ
1
)
cos
2
θ(
sin
2
θ
1
−
cos
2
θ
1
)
\begin{gathered} = \frac{ \big(\frac{ cos^{2} \theta}{sin^{2} \theta} - 1) }{ \big(\frac{ cos^{2} \theta}{sin^{2} \theta} + 1)}\\= \frac{cot^{2} \theta - 1 }{cot^{2} \theta + 1 } \\= \frac{ \sqrt{7}^{2} - 1 }{\sqrt{7}^{2} + 1 }\:[From \:(1) ]\end{gathered}
=
(
sin
2
θ
cos
2
θ
+1)
(
sin
2
θ
cos
2
θ
−1)
=
cot
2
θ+1
cot
2
θ−1
=
7
2
+1
7
2
−1
[From(1)]
\begin{gathered} = \frac{ 7 - 1 }{ 7 + 1 }\\= \frac{6}{8} \\= \frac{3}{4} \end{gathered}
=
7+1
7−1
=
8
6
=
4
3
Therefore.,
\red { Value \: of \: \frac{cosec^{2} \theta - sec^{2} \theta }{ cosec^{2} \theta + sec^{2} \theta }}\green { =\frac{3}{4}}Valueof
cosec
2
θ+sec
2
θ
cosec
2
θ−sec
2
θ
=
4
3
•••♪