Math, asked by lavanyagowda49, 10 days ago

If cot theta =q/p , show that p sin theta - q cos theta /p sin theta +q cos theta =p^2 -q^2/p^2+q^2 ​

Answers

Answered by anindyaadhikari13
10

\texttt{\textsf{\large{\underline{Solution}:}}}

GIVEN,

\tt \mapsto \cot(x) =  \dfrac{q}{p}

We have to show that –

 \tt \mapsto \dfrac{p \sin(x) - q \cos(x)  }{p \sin(x) + q \cos(x) }  =  \dfrac{{p}^{2} - {q}^{2}}{ {p}^{2} +  {q}^{2} }

We know that,

 \tt \mapsto \cot(x)  =  \dfrac{1}{ \tan(x) }

Also,

 \tt \mapsto \tan(x) =  \dfrac{ \sin(x) }{ \cos(x) }

So,

 \tt \mapsto \cot(x)  =  \dfrac{ \sin(x)}{ \cos(x) }

Now,

 \tt = \dfrac{p \sin(x) - q \cos(x)  }{p \sin(x) + q \cos(x) }

Dividing both numerator and denominator by sin(x), we get,

 \tt = \dfrac{\dfrac{p \sin(x) - q \cos(x) }{\sin(x)}}{\dfrac{p \sin(x) + q \cos(x)}{\sin(x)}}

 \tt = \dfrac{p - \dfrac{q \cos(x) }{\sin(x)}}{p+\dfrac{ q \cos(x)}{\sin(x)}}

Now, cot(x) = cos(x)/sin(x). So, the fraction becomes,

 \tt = \dfrac{p - q \times \dfrac{q}{p}}{p+q \times\dfrac{ q}{p}}

 \tt = \dfrac{\dfrac{p^{2} - q^{2}}{p}}{\dfrac{p^{2}+q^{2}}{p}}

Now, we can cancel out p. We get -

 \tt = \dfrac{p^{2} - q^{2}}{p^{2}+q^{2}}

Thus,

 \tt \mapsto \dfrac{p \sin(x) - q \cos(x)  }{p \sin(x) + q \cos(x) }  =  \dfrac{{p}^{2} - {q}^{2}}{ {p}^{2} +  {q}^{2} }

Hence, Proved.

\texttt{\textsf{\large{\underline{Additional Information}:}}}

1. Relationship between sides.

  • sin(x) = Height/Hypotenuse.
  • cos(x) = Base/Hypotenuse.
  • tan(x) = Height/Base.
  • cot(x) = Base/Height.
  • sec(x) = Hypotenuse/Base.
  • cosec(x) = Hypotenuse/Height.

2. Square formulae.

  • sin²x + cos²x = 1.
  • cosec²x - cot²x = 1.
  • sec²x - tan²x = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x).
  • cos(x) = 1/sec(x).
  • tan(x) = 1/cot(x).

4. Cofunction identities.

  • sin(90° - x) = cos(x) and vice versa.
  • cosec(90° - x) = sec(x) and vice versa.
  • tan(90° - x) = cot(x) and vice versa.
Similar questions