Math, asked by ojastejask, 9 months ago

if cot theta=root 3,then find the value of cos square theta-sin square theta.

Answers

Answered by Anonymous
27

{\red{\huge{\underline{\underline{\mathtt{Question:-}}}}}}

If cot∅=√3,then find the value of cos²∅-sin²∅.

{\red{\huge{\underline{\underline{\mathtt{Solution:-}}}}}}

cot∅ = √3

We know cot30° = √3

→cot∅ = cot30°

→ ∅ = 30°

cos²∅-sin²∅

† Putting the value of ∅ = 30°

→ cos²30°- sin²30°

↓↓↓

{\purple{\bold{Putting\: the\: values\::-\\cos30=\sqrt{3}/2 \\sin30= 1/2}}}

→ (√3/2)² - (1/2)²

→ 3/4 - 1/4

→ 2/4

{\green{\bold{1/2}}}

{\red{\huge{\underline{\underline{\mathtt{Answer:-}}}}}}

Value of (cos²∅ - sin²∅) is {\purple{\boxed{\bold{1/2}}}}.

Answered by CharmingPrince
19

\huge{ \green{ \mathfrak{ \underline{Question}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

■☆If cot \theta= \sqrt{3},then find the value of cos^2 \theta-sin^2 \theta☆■

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{ \green{ \mathfrak{ \underline{Answer}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\boxed{\red{\bold{Given:}}}

\blue{\implies cot \theta = \sqrt{3}}

\implies \theta = coth^{-1} \sqrt{3}

 \blue{\implies \theta = 30^{\circ}}

\boxed{\red{\bold{Put \theta = 30^o}}}

cos^2 \theta - sin^2 \theta

 \implies  cos^2 30^o - sin^2 30^o

\purple{\implies \left( \displaystyle{\frac{\sqrt{3}}{2}}\right)^2 - \left( \frac{1}{2} \right)^2} \\ (\because \: cos30^o = \frac{\sqrt{3}}{2} \: and \: sin30^o = \displaystyle{\frac{1}{2}})

\implies \displaystyle{\frac{3}{4}} - \frac{1}{4}

\implies \displaystyle{\frac{2}{4}}

\green{\implies \displaystyle{\frac{1}{2}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions