Math, asked by jahanvi9189, 1 year ago

If cot theta =root 7 show that cosec ^2 theta -sec^2theta /cosec^2theta +sec^2theta =3/4As given in the picture

Answers

Answered by mysticd
93

Answer:

\frac{(cosec^{2}\theta-sec^{2}\theta)}{(cosec^{2}\theta+sec^{2}\theta)}\\=\frac{3}{4}

Step-by-step explanation:

Given \: cot\theta = \sqrt{7}--(1)

LHS =\frac{(cosec^{2}\theta-sec^{2}\theta)}{(cosec^{2}\theta+sec^{2}\theta)}

=\frac{\frac{1}{sin^{2}\theta}-\frac{1}{cos^{2}\theta}}{\frac{1}{sin^{2}\theta}+\frac{1}{cos^{1}\theta}}

Multiply numerator and denominator by cos^{2}\theta ,we get

=\frac{\frac{cos^{2}\theta}{sin^{2}\theta}-\frac{cos^{2}\theta}{cos^{2}\theta}}{\frac{cos^{2}\theta}{sin^{2}\theta}+\frac{cos^{2}\theta}{cos^{1}\theta}}

=\frac{cot^{2}\theta-1}{cot^{2}\theta +1}

=\frac{(\sqrt{7})^{2}-1}{(\sqrt{7})^{2}+1}

/* From(1)*/

=\frac{7-1}{7+1}\\=\frac{6}{8}\\=\frac{3}{4}\\=RHS

•••♪

Answered by nayan6666
8

Answer:

3/4 is correct answer

Step-by-step explanation:

please mark as brainliest

Similar questions