Math, asked by siddhant2005bhandare, 4 months ago

if cot theta +tan theta=2 then prove:cot²theta +tan²theta=2​

Answers

Answered by suraj5070
149

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt if\: cot\:\theta +tan\:\theta=2 \:then \:prove:\\\tt {cot}^{2}\:\theta +{tan}^{2}\:\theta=2

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf \implies cot\:\theta +tan\:\theta=2

 {\underbrace {\overbrace {\color {orange} {\sf \bf Square \:the\:both\:sides}}}}

 \sf \bf \implies {\Big(cot\:\theta +tan\:\theta\Big)}^{2}={\Big(2\Big)}^{2}

 \sf \bf \implies {cot}^{2}\:\theta +{tan}^{2} \:\theta+2 \times cot\:\theta \times  tan\:\theta=4

 \sf \bf \implies {cot}^{2}\:\theta +{tan}^{2} \:\theta+2 \times \dfrac{1}{tan\:\theta} \times  tan\:\theta=4

 \sf \bf \implies {cot}^{2}\:\theta +{tan}^{2} \:\theta+2 \times \dfrac{1}{\cancel {tan\:\theta}} \times  \cancel {tan\:\theta}=4

 \sf \bf \implies {cot}^{2}\:\theta +{tan}^{2} \:\theta+2 =4

 \sf \bf \implies {cot}^{2}\:\theta +{tan}^{2} \:\theta=4-2

\implies {\boxed {\boxed {\color{blue} {\sf \bf {cot}^{2}\:\theta +{tan}^{2} \:\theta=2}}}}

 \tt Used \:identity

 \sf \bf {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 {\color {green} {\tt Identities}}

 \sf \bf {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}

 \sf \bf {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}

 \sf \bf (a+b) (a-b) ={a}^{2}-{b}^{2}

Answered by Anonymous
0

Infrastructure can be referred to the basic physical operations of a nation or a business, such as communication, transportation, water, sewage, etc. This operation can be highly expensive investments and an important aspect of the economic development of a country

Similar questions