Math, asked by Rupalisingh, 1 year ago

if (cot theta + tan theta) =m and (sec theta - cos theta)=n prove that

(m^2 n)^2/3 - (mn^2)^2/3 = 1

Please solve this in a copy

Answers

Answered by siddhartharao77
107
The answer is explained in the attachment.


Hope it helps
Attachments:

siddhartharao77: thanks
Rupalisingh: nice answer
siddhartharao77: thank you!
HuneyRock: hii
Answered by FelisFelis
29

Answer:

If cot\theta+tan\theta=m and sec\theta+cos\theta=n

Prove that: (m^{2}n)^{\frac{2}{3}}-(mn^{2})^{\frac{2}{3}}=1

If cot\theta+tan\theta=m

since, cot\theta=\frac{1}{tan\theta}

\frac{1}{tan\theta}+tan\theta=m

\frac{1+tan^{2}\theta}{tan\theta}=m

Since 1+tan^{2}\theta=sec^{2}\theta

\frac{sec^{2}\theta}{tan\theta}=m

since, tan\theta=\frac{sin\theta}{cos\theta}

\frac{sec^{2}\theta}{\frac{sin\theta}{cos\theta}}=m

\frac{1}{sin\theta cos\theta}=m

If sec\theta+cos\theta=n

since, sec\theta=\frac{1}{cos\theta}

\frac{1}{cos\theta}+cos\theta=n

\frac{1-cos^{2}\theta}{cos\theta}=n

\frac{sin^{2}\theta}{cos\theta}=n

Left hand side

(m^{2}n)^{\frac{2}{3}}-(mn^{2})^{\frac{2}{3}}

((\frac{1}{sin\theta cos\theta})^{2}\frac{sin^{2}\theta}{cos\theta})^{\frac{2}{3}}-(\frac{1}{sin\theta cos\theta}\frac{sin^{2}\theta}{cos\theta})^{\frac{2}{3}}

(\frac{1}{cos^{2}\theta}-(\frac{sin^{2}\theta}{cos^2\theta}

sec^{2}\theta-tan^{2}\theta

=1

=Right hand side

Hence proved

Similar questions