Math, asked by vodnalasaradhi55, 4 months ago

if cot tita= 7/8 then fing the value of (1+cos tita) (1-cos tita) /(sin tita +1) (sin tita -1)​

Answers

Answered by SugarCrash
41

\huge\sf\underline{AnsweR}:\\

\large\sf\implies-\frac{64}{105}\\\\

\huge\sf\underline{Solution}:\\

\large\sf{Given}:\\

\:\:\:\:\:\:\;\:\;\:\star Cos\theta =\frac{7}{8}

\large\sf{To\:Find}:\\

\large\red{\bigstar}\frac{(1+cos \theta) (1-cos \theta)}{(sin \theta +1) (sin \theta -1)}

we know that,

• sinθ = p/h

• cosθ = b/h

• tanθ = p/b

• cotθ = b/p

• cscθ = h/p

• secθ = h/b

where ,

• b = base, • p = perpendicular, • h = hypotenuse

so, It is given that cosθ = 7/8

Means, base is 7 and perpendicular is 8.

• Now we have to find hypotenuse,

we can find it using Pythagoras theorem.

• h²=b²+p²

\sf \implies h^2 = 7^2 + 8^2 \\ \implies h^2 = 49+64 \\ \implies h^2 = 113 \\ \boxed{\sf h = \sqrt{113}}

\bigstar \sf sin\theta = \frac{perp.}{hyp.} \\ \\ sin\theta = \frac{8}{\sqrt{113}} ……(i)

Now,

\large\frac{(1+cos \theta) (1-cos \theta)}{(sin \theta +1) (sin \theta -1)}

we know,

\\ \bf \red{(a+b)(a-b)=a^2-b^2}\\

Applying this Identity here, we got

\\ \implies\sf \frac{ (1^2-cos^2 \theta)}{ (sin^2 \theta -1^2)}

\color{red}\boxed{\sf sin^2\theta+cos^2\theta= 1}

So,

\color{red} \sf \boxed{\sf sin^2 =1-cos^2\theta}

\\ \implies\sf \frac{ (sin^2 \theta)}{ (sin^2 \theta -1)}

Put the value of sinθ that we got in (i) ...

\\ \large \implies \sf \frac{(\frac{8}{\sqrt{113}})^2}{(\frac{8}{\sqrt{113}})^2-1}

\large\sf\implies \frac{\frac{64}{113}}{\frac{64}{113}-1} \\ \\ \large\sf\implies \frac{\frac{64}{\cancel{113}}}{\frac{64-113}{\cancel{113}}} \\\\\large\implies\sf \frac{64}{64-113}\\ \\ \large\implies\sf\frac{64}{-105}

{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} 

Attachments:
Similar questions