Math, asked by RaghoreRajveer, 9 months ago

if cot x = -3/4 x is in 2 quadrant then find sinx/2 cosx/2 tanx/2​

Answers

Answered by MaheswariS
1

\textbf{Given:}

cotx=\dfrac{-3}{4}

\text{x lies in 2 quadrant}

\textbf{To find:}

sin\frac{x}{2}\,cos\frac{x}{2}\,tan\frac{x}{2}

\textbf{Solution:}

tanx=\dfrac{-4}{3}

\text{Consider,}

sec^2x=1+tan^2x

sec^2x=1+\dfrac{16}{9}

sec^2x=\dfrac{25}{16}

sec^2x=\dfrac{25}{16}

secx=\pm\dfrac{5}{4}

\text{Taking reciprocals we get}

cosx=\pm\dfrac{4}{5}

\text{But x lies in 2 nd quadrant}

\implies\,cosx=\dfrac{-4}{5}

\text{Using the identity}

\boxed{cosA=1-2\,sin^2\frac{A}{2}}

1-2\,sin^2\frac{x}{2}=\dfrac{-4}{5}

2\,sin^2\frac{x}{2}=1+\dfrac{4}{5}

\implies\,sin^2\frac{x}{2}=\dfrac{9}{10}</p><p>

\text{Now}

sin\frac{x}{2}\,cos\frac{x}{2}\,tan\frac{x}{2}

=sin\frac{x}{2}\,cos\frac{x}{2}\,\dfrac{sin\frac{x}{2}}{cos\frac{x}{2}}

=sin\frac{x}{2}{\times}sin\frac{x}{2}

=sin^2\frac{x}{2}

=\dfrac{9}{10}

\textbf{Answer:}

\bf\,sin\frac{x}{2}\,cos\frac{x}{2}\,tan\frac{x}{2}=\dfrac{9}{10}

Similar questions