Math, asked by Sidharthreddy22222, 8 months ago

If cot x = -5/12 , x lies in second quadrant , find the values of other five trigonometric functions.

Answers

Answered by Ataraxia
50

SOLUTION :-

Given,

cot x = \sf-\dfrac{5}{12}

\longrightarrow\sf tan \ x = \dfrac{1}{cos \ x}

\longrightarrow\bf tan \ x = -\dfrac{12}{5}

We know that,

\boxed{\sf sec^2 \ x =1+tan^2 \ x}

\longrightarrow\sf sec^2 \ x = 1+\left(-\dfrac{12}{5}\right)^2 \\\\\longrightarrow sec^2 \ x = 1+\dfrac{144}{25} \\\\\longrightarrow sec^2 \ x = \dfrac{169}{25} \\\\\longrightarrow sec \ x = \pm \dfrac{13}{5}

Since x lies in second quadrant, sec x will be negative.

\bf\therefore sec \ x =  - \dfrac{13}{5}

\sf\longrightarrow  cos \ x = \dfrac{1}{sec \ x } \\\\\longrightarrow\bf  cos \ x = -\dfrac{5}{13}

We know that,

\boxed{\sf sin \ x = tan \ x  \ cos \ x }

\longrightarrow\sf  sin \ x =  \sf \left( -\dfrac{12}{5}\right)\times \left( - \dfrac{5}{13}\right)  \\\\\longrightarrow\bf  sin \ x = \dfrac{13}{12}

\longrightarrow \sf cosec \ x =\dfrac{1}{sin \ x } \\\\\longrightarrow\bf cosec \ x =\dfrac{13}{12}

Answered by saibalaji1234
6

Step-by-step explanation:

if we know the trigono merric ratios then it will be easier

Attachments:
Similar questions