Math, asked by harkranchiamerswari1, 2 days ago

If cot x = sin 30 degrees + sin 45 degrees then find the value of x ?​

Answers

Answered by priyanka4212
0

Answer:

R.H.S

sin45⋅cos45

o

+sin30

=

2

1

.

2

1

+

2

1

=

2

1

+

2

1

=

2

2

=1

Now,

L.H.S

tan3x=1

But tan45

o

=1

∴tan3x=tan45

⇒3x=45

⇒x=

3

45

∴x=15.

Answered by brokendreams
1

Given: cot(x) \ = \ sin(30^{o}) + sin(45^{o})

To find: the value of x

Solution:

We have, cot(x) \ = \ sin(30^{o}) + sin(45^{o})

We know that sin(30^{o}) \ = \ \frac{1}{2} and sin(45^{o}) \ = \ \frac{1}{\sqrt{2}}; substituting these two values in the above expression, we will have:

cot(x) \ = \ \frac{1}{2} \ + \ \frac{1}{\sqrt{2}}

\Rightarrow cot(x) \ = \ \frac{1}{2} \ + \ \frac{\sqrt{2}}{2}

\Rightarrow cot(x) \ = \ \frac{1 + \sqrt{2} }{2}

Multiplying cot^{-1} on both sides in the above expression, we get:

\Rightarrow x \ = \ cot^{-1} (\frac{1 + \sqrt{2} }{2})

\Rightarrow x \ = \ cot^{-1} (1.207)

\Rightarrow x \ = \ 39.642^{o}

Hence, the value of x is 39.642^{o}

Similar questions